calculate the area of the shaded region from the following figure
Attachments:
![](https://hi-static.z-dn.net/files/d6e/b2b656a143032ec0ff0eadf2051dfa67.jpg)
Answers
Answered by
0
then area of large triangle - area of small triangle
=1248-120
=1128
=1248-120
=1128
Attachments:
![](https://hi-static.z-dn.net/files/dce/b1ac9e72a8989e0ac3b3698f63c7fddd.jpg)
Answered by
0
Firstly find the side QP by using the pythagorus theorem i.e.,
![h {}^{2} = b {}^{2} + p {}^{2} h {}^{2} = b {}^{2} + p {}^{2}](https://tex.z-dn.net/?f=h+%7B%7D%5E%7B2%7D++%3D+b+%7B%7D%5E%7B2%7D++%2B+p+%7B%7D%5E%7B2%7D+)
putting the values,
![{qp}^{2} = 16 {}^{2} + 12 {}^{2} {qp}^{2} = 16 {}^{2} + 12 {}^{2}](https://tex.z-dn.net/?f=%7Bqp%7D%5E%7B2%7D++%3D+16+%7B%7D%5E%7B2%7D++%2B+12+%7B%7D%5E%7B2%7D+)
![{qp}^{2} = 144 + 256 {qp}^{2} = 144 + 256](https://tex.z-dn.net/?f=+%7Bqp%7D%5E%7B2%7D++%3D+144+%2B+256)
![{qp}^{2} = 400 {qp}^{2} = 400](https://tex.z-dn.net/?f=+%7Bqp%7D%5E%7B2%7D++%3D+400)
![qp = \sqrt{400} qp = \sqrt{400}](https://tex.z-dn.net/?f=qp+%3D++%5Csqrt%7B400%7D+)
![qp = 20 qp = 20](https://tex.z-dn.net/?f=qp+%3D+20)
we got the side QP =20 cm
Now we have all the sides of the triangle PQR
○Perimeter of triangle PQR is
![s = (a + b + c) \div 2 s = (a + b + c) \div 2](https://tex.z-dn.net/?f=s+%3D+%28a+%2B+b+%2B+c%29+%5Cdiv+2)
s = (52+48+20)÷2
s = 120÷2
s = 60
○ Area of triangle PQR is
![area= \sqrt{s(s - a)(s - b)(s - c)} area= \sqrt{s(s - a)(s - b)(s - c)}](https://tex.z-dn.net/?f=area%3D++%5Csqrt%7Bs%28s+-+a%29%28s+-+b%29%28s+-+c%29%7D+)
![area= \sqrt{60(60 - 52)(60 - 48)(60 - 20)} area= \sqrt{60(60 - 52)(60 - 48)(60 - 20)}](https://tex.z-dn.net/?f=area%3D++%5Csqrt%7B60%2860+-+52%29%2860+-+48%29%2860+-+20%29%7D+)
![area = \sqrt{60(8)(12)(40)} area = \sqrt{60(8)(12)(40)}](https://tex.z-dn.net/?f=area+%3D++%5Csqrt%7B60%288%29%2812%29%2840%29%7D+)
![area = \sqrt{230400} area = \sqrt{230400}](https://tex.z-dn.net/?f=area+%3D++%5Csqrt%7B230400%7D+)
![area= 400{cm} {}^{2} area= 400{cm} {}^{2}](https://tex.z-dn.net/?f=area%3D+400%7Bcm%7D+%7B%7D%5E%7B2%7D+)
area of the righ angled triangle =
![(1 \div 2) \times b \times h (1 \div 2) \times b \times h](https://tex.z-dn.net/?f=%281+%5Cdiv+2%29+%5Ctimes+b+%5Ctimes+h)
= (1÷2)×16×12
![= 96 {cm}^{2} = 96 {cm}^{2}](https://tex.z-dn.net/?f=+%3D+96+%7Bcm%7D%5E%7B2%7D+)
Area of the shaded region = Area of triangle PQR - Area of right angled triangle
![area =( 400 - 96) {cm}^{2} area =( 400 - 96) {cm}^{2}](https://tex.z-dn.net/?f=area+%3D%28+400+-+96%29+%7Bcm%7D%5E%7B2%7D+)
![area = 304 {cm}^{2} area = 304 {cm}^{2}](https://tex.z-dn.net/?f=area+%3D+304+%7Bcm%7D%5E%7B2%7D+)
AREA OF THE SHADED REGION IS 304 CM^2
putting the values,
we got the side QP =20 cm
Now we have all the sides of the triangle PQR
○Perimeter of triangle PQR is
s = (52+48+20)÷2
s = 120÷2
s = 60
○ Area of triangle PQR is
area of the righ angled triangle =
= (1÷2)×16×12
Area of the shaded region = Area of triangle PQR - Area of right angled triangle
AREA OF THE SHADED REGION IS 304 CM^2
Similar questions