Math, asked by arun54220, 3 months ago

calculate the Centroid of the triangle whose vertices are x(2,3),y(3,1)&z(-1,2).​

Answers

Answered by hakimsarah75
0

Step-by-step explanation:

X(2,3)

Y(3,1)

Z(-1,2)

Centroid(x,y)=(2+3-1/3 , 3+1+2/3)

(4/3, 6/3)

(4/3, 2)

Attachments:
Answered by Anonymous
1

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(2,3), \: y(3,1) \: and \: z(-1,2)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(2,3) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(3,1) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(-1,2) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{2 + 3 + (-1)}{3}) ,( \frac{3 + 1 + 2}{3} ) \\ \\ \rightarrow \sf \: Centroid = ( \frac{5 - 1}{3}) , (\frac{\cancel6}{\cancel3} ) \\  \\ \rightarrow \sf \: Centroid = ( \frac{4}{3}) , (\frac{2}{1} ) \\  \\ \rightarrow \sf \: Centroid = (1.3,2)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (1.3,2).

Similar questions