Math, asked by goyalshelly33, 6 months ago

Calculate the compound interest for the second
year on 12,000 invested for 3 years at 10%
per year. Also, find the sum due at the end of
the third year.​

Answers

Answered by Nidhifogla
3

Answer:

Sum is equal to 11000.

Answered by BrainlyHope
163

{\huge{\huge{\underline{\underline{\mathrm{\red{QuesTion:-}}}}}}}

Calculate the compound interest for the second

year on * 12,000 invested for 3 years at 10%

per year. Also, find the sum due at the end of

the third year.

{\huge{\huge{\underline{\underline{\mathrm{\green{SoluTion:-}}}}}}}

\underline {\purple{\boxed{ \sf{Given:-}}}}

✍︎Principal=12000

✍︎Rate=10%

✍︎Time=3 years

Lets understand

☞︎︎︎The money given to the borrower is called Principal.

☞︎︎︎the extra money given to the lender by borrower is called interest.

☞︎︎︎the money given to borrower for a specified time is called Time.

lets learn the formula for calculacting amount for CI(compound interest).

\mathrm{ a = p(1 + \frac{r}{100}) {}^{n}  }

 ‎

\underline {\green{\boxed{ \sf{Here:-}}}}

 ‎

 ‎

A=Amount

P=Principal

r=rate

n=time

 ‎

 ‎

lets solve the formula

\mathrm{ a = 12000( 1 + \frac{10}{100}) {}^{3}  }

 ‎

 ‎

100 will be simplified by 10

so

 ‎

 ‎

\mathrm{ a = 12000( 1 + \frac{1}{10}) {}^{3}  }

 ‎

 ‎

now lets evaluate the formula

 ‎

 ‎

\mathrm{ a = 12000(  \frac{11}{10}) {}^{3}  }

 ‎

 ‎

\mathrm{ a = 12000 \times   \frac{11}{10} \times  \frac{11}{10} \times  \frac{11}{10}  }

 ‎

 ‎

all zeroes of 10s will be divided by 12,000

 ‎

 ‎

\mathrm{ a = 12 \times   \frac{11}{1} \times  \frac{11}{1} \times  \frac{11}{1}  }

 ‎

 ‎

there is no value of 1 in the formula so

we can write formula as

 ‎

 ‎

\mathrm{ a = 12 \times   \frac{11}{} \times  \frac{11}{} \times  \frac{11}{}  }

 ‎

 ‎

now lets evavulate

 ‎

 ‎

\mathrm{ a = 12 \times   \frac{11}{} \times  \frac{11}{} \times  \frac{11}{}=15972  }

 ‎

 ‎

\underline {\purple{\boxed{ \sf{Amount=15972}}}}

 ‎

 ‎

lets find out CI(compound interest)

CI=A-P

 ‎

 ‎

CI=15972-12000

=3972

 ‎

 ‎

The amount is 15972 so the sum due at the end of third year will be 15,972.

____________________________________

Similar questions