Physics, asked by khushboogupta2528, 6 months ago

Calculate the de-Broglie Wavelength of a particle accelerated
through a potential difference of 4000 volte. Given mass of

Proton = 1.6 7 X10-22 kq. Plank's constant = 6.62 x10134 Joule -sec​

Answers

Answered by Anonymous
29

 { \bold{ \underline{Given :}}}

  • Potential difference (Ve) = 4000 v

  • Mass of proton (m) =  \sf \: 1.67  \times 10 {}^{ - 22} kg

  • Plank's constant (h) =  \sf \: 6.62 \times 10 {}^{-34}  \:j/s

 \bold{ \underline{To  \: Find :}}

  • The de-Broglie wavelength of a particle.

 \bold{ \underline{Solution :}}

The de Broglie wavelength formula is expressed as ;

 \sf \red \bigstar \:  \lambda =  \dfrac{h}{\sqrt{2mVe}}

[ Put the values ]

 \sf \leadsto  \: \lambda \:  =  \dfrac{6.62 \times 10 {}^{   - 34} }{ \sqrt{ 2 \times 1.67 \times 10 {}^{ - 22} \times 4000 }  }

\sf \leadsto  \: \lambda \:  =  \dfrac{6.62 \times 10 {}^{ - 34}   }{ \sqrt{3.34 \times 10 {}^{ - 22} \times 4000 } }

\sf \leadsto  \: \lambda \:  = 6.62 \times 10 {}^{ - 34}  \times 1.15 \times 10 {}^{ - 9}

\sf \leadsto  \: \lambda \:  = 7.613 \times 10 {}^{-43} m  \: \green \bigstar

Therefore,

The de broglie wavelength of particle is \sf{7.613 \times 10^{-43}m.}

Answered by llalonell
1

 \huge{ \underline{ \underline \mathfrak \blue{Aƞswer -   }}}

Acceleration potential {V=100 v}V=100v .The de Broglie wavelength -:

\lambda{is}λis

\lambda{h/p}λh/p =\frac{1.227}{\sqrt{V}}

\lambdaλ =\frac{1.227}{\sqrt{100}}

nm={0.124nm}0.124nm .

  • The de Broglie wavelenght associated with an electron in this case is of the order of X-ray wavelengths.

Similar questions