Math, asked by sakshamjamdade, 2 months ago

Calculate the difference between the compound interest and the simple interest on Rs.10,000at 5p.c.p.a for

2 years.​

Answers

Answered by shalinidutt000
2

Answer:

Simple interest(SI)= Rs.1000

Compound interest(CI)= Rs. 1025

hope this will helpful for you

hope this will helpful for yougive thanks to me

hope this will helpful for yougive thanks to memark me as a brainliest answer

Attachments:
Answered by Eutuxia
5

Given :

  • Principal = Rs. 10000
  • Rate = 5%
  • Time = 2 years

To find :

  • difference between the compound interest and the simple interest

Solution :

\sf{Amount  =  P  \times  \Bigg\lgroup 1 +  \bigg(\dfrac{r}{100} \bigg)^{2}  \Bigg\rgroup }

             \sf{  =  10000  \times  \Bigg\lgroup 1 +  \bigg(\dfrac{5}{100} \bigg)^{2}  \Bigg\rgroup }

             \sf{  =  10000  \times  \Bigg\lgroup 1 +  \bigg(\dfrac{1}{20} \bigg)^{2}  \Bigg\rgroup }

              \sf{  =  10000  \times  \Bigg\lgroup 1 +  \bigg(\dfrac{1}{20} \bigg)^{2}  \Bigg\rgroup } [L.C.M \: of \: 20 \: is \: 1 \: and \: 20]

              \sf{  =  10000  \times  \Bigg\lgroup 1 +  \bigg(\dfrac{(1 \times  20) + (1 \times 1) }{20} \bigg)^{2}  \Bigg\rgroup }

              \sf{  =  10000  \times  \bigg(\dfrac{ 20 + 1 }{20} \bigg)^{2}  \Bigg

              \sf{  =  10000  \times  \bigg(\dfrac{ 21 }{20} \times \dfrac{ 21 }{20}  \bigg)  \Bigg

              \sf{  =  10000  \times  \bigg(\dfrac{441 }{400 } \bigg)  \Bigg

              \sf{  =  100 \not0 \not 0  \times  \bigg(\dfrac{441 }{4 \not 0 \not0 } \bigg)  \Bigg

              \sf{  =  100 \times  \bigg(\dfrac{441 }{4 } \bigg)  \Bigg

              \sf{  =  \dfrac{44100}{4 }

              = 11025

Compound Interest = Amount - Principal

                                 = 11025 - 10,000

                                 = 1025

Therefore, Compound Interest is Rs. 1025.

Simple Interest = \sf \dfrac{p \times r \times t }{100}

                         = \sf \dfrac{10000 \times 5  \times 2 }{100}

                         = \dfrac{100000}{100}

                         = 1000

Therefore, Simple Interest is Rs. 1000.

Differcene = Compound Interest - Simple Interest

                  = 1025 - 1000

                  = 25

Therefore, difference is Rs. 1025.

         

             

           

Similar questions