Math, asked by shannu3259, 1 year ago

Calculate the fishers ideal index from the following data

Answers

Answered by codiepienagoya
0

Given:

A \ \  6  \ \ 50 \ \ \ 10 \ \ 56 \\B  \ \  2 \ \ 100 \ \ \ 2\  \  \ 120 \\C \ \  4 \ \ 60 \ \ \ \ 6 \ \ \ \ 60\\D \ \ 10 \ \ 30 \ \ 12 \ \ 24\\

To find:

fishers ideal index=?

Solution:

In the question, the is missing data is given in the given part. Please find it.

In the first step, we assign the numbering to the given data.

    A_0 \ B_0 \ A_1 \ B_1

A \ \  6  \ \ 50 \ \ \ 10 \ \ 56 \\B  \ \  2 \ \ 100 \ \ \ 2\  \  \ 120 \\C \ \  4 \ \ 60 \ \ \ \ 6 \ \ \ \ 60\\D \ \ 10 \ \ 30 \ \ 12 \ \ 24\\

In the second step, we multiply the numbering and add its value, which is defined as follows:

   A_0 B_0 \ \  A_1B_0 \ \   A_0B_1 \  \ A_1B_1

A \ \  300  \ \ 500 \ \ \ 336 \ \ \ 560 \\ B  \ \  200 \ \ 200 \ \ \ 240\  \  \ 240 \\C \ \  240 \ \ 360 \ \ \  240 \ \  \ 360\\D \ \ 300 \  \ 360 \ \ \ 240  \ \ \ 288\\

\Sigma \  \  1040  \ \ 1420  \ \ 1056 \ \ 1448

Calculating L and P:  

L →Laspeyre's index

P → index Paasche's index

L = \frac{\Sigma  A_1B_0 }{ \Sigma  A_0B_0 } \times 100

   = \frac{1420}{ 1040}\times  100\\\\ = \frac{142}{ 104}\times  100\\\\ = 1.365\times  100\\\\ =  136.5

P = \frac{\Sigma  A_1B_1 }{ \Sigma  A_0B_1 } \times 100

= \frac{1448}{ 1056}\times  100\\\\  = 1.371\times  100\\\\ =  137.1    

Using the formula for  fisher's ideal index = \sqrt{ L\times P }

                                                                     = \sqrt{ (136.5 \times 137.1)} \\\\ = \sqrt{18714.15}\\\\ = 136.79

Similar questions