Physics, asked by zeelshah881, 3 months ago

Calculate the polarisability and relative permittivity in Hydrogen gas with a density of 9.8 × 10 26 atoms / m3. Given the radius of the hydrogen atom is 0.50 ×10-10 m, є0 =8.85×10-12.

Answers

Answered by AkshayRamakrishnan
0

Answer:

Explanation:

Answer Attached Below

Attachments:
Answered by brokendreams
2

Step-by-step Explanation:

Given: Number density of Atoms (N) = 9.8 × 10²⁶ atoms/m³

The radius of the Hydrogen atom = 0.50 × 10⁻¹⁰ m

To Find: Polarisability \alpha_{e} and relative permittivity \varepsilon_{r}

Solution:

  • Calculating polarisability \alpha_{e}

Polarisability can be calculated by the following formula;

\alpha_{e} = 4 \pi \varepsilon R^{3}

Substituting given values, we will get;

\alpha_{e} = 4 \times 3.14 \times 8.85 \times 10^{-12} \times (0.5 \times 10^{-10} )^{3} = 1.389 \times 10^{-41} \ Fm^{2}

  • Calculating relative permittivity \varepsilon_{r}

Polarisability \alpha_{e} and relative permittivity  \varepsilon_{r} are related as

\alpha_{e} = \frac{\varepsilon_{0}(\varepsilon_{r} - 1)}{N}

\Rightarrow \varepsilon_{r} = \frac{N \alpha_{e}}{\varepsilon_{0}} + 1

Substituting the given values, we will get

\varepsilon_{r} = \frac{9.8 \times 10^{26} \times 1.389 \times 10^{-41}}{8.85 \times 10^{-12}} + 1 = 1.0051 \ F/m

Hence, Polarisability is \alpha_{e} = 1.389 \times 10^{-41} \ Fm^{2}  and relative permittivity  is \varepsilon_{r} = 1.0051 \ F/m

Similar questions