Physics, asked by joker0205, 9 months ago

Calculate the ratio of wavelength of first and the ultimate line of balmer series of Li2+ ion.​

Attachments:

Answers

Answered by nirman95
7

To find:

The ratio of wavelength of first and the ultimate line of balmer series of Li2+ ion.

Calculation:

For the first line of Balmer series:

 \therefore \:  \dfrac{1}{ \lambda1}  = R {z}^{2}  \bigg \{ \dfrac{1}{ {(n1)}^{2} }  -  \dfrac{1}{ {(n2)}^{2} }  \bigg \}

 =  >  \:  \dfrac{1}{ \lambda1}  = R {z}^{2}  \bigg \{ \dfrac{1}{ {(2)}^{2} }  -  \dfrac{1} {{(3)}^{2} }  \bigg \}

 =  >  \:  \dfrac{1}{ \lambda1}  = R {z}^{2}  \bigg \{ \dfrac{1}{4 }  -  \dfrac{1} {9 }  \bigg \}

 =  >  \:  \dfrac{1}{ \lambda1}  = R {z}^{2}  \bigg \{ \dfrac{5 } {36} \bigg \}

For the ultimate line in Balmer series:

 \therefore \:  \dfrac{1}{ \lambda2}  = R {z}^{2}  \bigg \{ \dfrac{1}{ {(n1)}^{2} }  -  \dfrac{1}{ {(n2)}^{2} }  \bigg \}

 =  >  \:  \dfrac{1}{ \lambda2}  = R {z}^{2}  \bigg \{ \dfrac{1}{ {(2)}^{2} }  -  \dfrac{1}{ { \infty}^{2} }  \bigg \}

 =  >  \:  \dfrac{1}{ \lambda2}  = R {z}^{2}  \bigg \{ \dfrac{1}{4}  -  0\bigg \}

 =  >  \:  \dfrac{1}{ \lambda2}  = R {z}^{2}  \bigg \{ \dfrac{1}{4} \bigg \}

Required Ratio:

 \therefore \:  \dfrac{ \lambda1}{ \lambda2}  =  \dfrac{9}{5}

So, final answer:

  \boxed{ \large{ \bold{ \lambda1 : \lambda2  =  9 : 5}}}

Similar questions