Physics, asked by nareshjha224, 10 months ago

Calculate the resistance of a copper wire 1.0 km long and 0.50 mm diameter if the resistivity of the copper is 1.7×10‐⁸ ohm meter..solve and explain the calculation also

Answers

Answered by Brâiñlynêha
25

Given :-

• Length of wire = 1km = 1000m

• Diameter= 0.5mm or 0.0005m

\implies\sf 5\times 10^{-4}m\\ \\ \implies\sf Radius= \dfrac{\cancel5\times 10^{-4}}{\cancel2}\\ \\ \implies\sf Radius = 2.5\times 10^{-4}m

• Resistivity of wire = \sf 1.7\times 10^{-8}\Omega

To find :-

The Resistance of copper wire

According to the formula

\boxed{\sf \ R= \rho \dfrac{l}{A}}

Where ,

R= Resistance

\sf \rho = Resistivity

l= Length of wire

A = Area of cross section

  • Now find the value of A (Area of cross section)

\sf \ Area \ of \ cross \ section= \pi r^2\\ \\ \longrightarrow\sf Area = 3.14\times (2.5\times 10^{-4})^2\\ \\ \longrightarrow\sf Area = 3.14\times 6.25\times 10^{-8}m\\ \\ \longrightarrow\sf Area = 19.625\times 10^{-8}m^2

Let's find the Resistance !

\longrightarrow\sf R= \dfrac{\rho l}{A}\\ \\ \longrightarrow\sf R= \dfrac{1.7\times 10^{-8}\times 1000}{19.625\times 10^{-8}}\\ \\ \longrightarrow\sf R= \dfrac{1.7\times 10^{-8}\times 10^{3}\times 10^8}{19.625}\\ \\ \longrightarrow\sf R= \dfrac{1.7\times 10^{(-8+11)}}{19.625}\\ \\ \longrightarrow\sf R= \dfrac{1.7\times 10^{3}}{19.625}\\ \\ \longrightarrow\sf R= \cancel{\dfrac{1700}{19.625}}\\ \\ \longrightarrow\sf R= 86.6 \Omega

\underbrace{\sf\ \ Resistance= 86.6 \Omega}

Answered by Anonymous
16

\mathcal{\huge{\underline{\underline{\red{Question:-}}}}}

✒ Calculate the resistance of a copper wire 1.0 km long and 0.50 mm diameter if the resistivity of the copper is 1.7×10‐⁸ ohm meter.

\mathfrak{\huge{\underline{\underline{\green{Answer:-}}}}}

The resistivity of wire is 86.6Ω.

\mathbb{\huge{\underline{\underline{\orange{SOLUTION:-}}}}}

GᏆᐯᗴᑎ :-

Length l = 1.0 km = 1000 m

Diameter d = 0.50 mm

тo find :-

☑ The resistivity of copper wire.

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ :-

We, know that

r = d / 2. {here d is 0.50mm}

r =

 \dfrac{0.50 }{2}

r = 0.25 mm

r = 0.00025mm

We know resisivity,

ϱ = 1.7 × 10^-8Ωm

Resistance R = ϱ × length/area

=> ϱ × l /a

=> R = 1.7 × 10^-8 × 1000/πr²

 =>  \dfrac{1.7 \times  {10}^{ - 5} }{3.14 \times 0.00025 \times 0.00025}

 = > r  =  \dfrac{1.7 \times  {10}^{3} }{3.14 \times 6.25}

 = > r  = \cancel{\dfrac{1700}{19.625}}

=> R = 86.6Ω

______________________________________

Similar questions