Math, asked by Anonymous, 2 months ago

Calculate the shared region.

If you answer the questions correctly with explanation, I'll mark you as a brainlist, give thanks to 10 answers of yours​

Attachments:

Answers

Answered by DeeznutzUwU
1

       \text{\huge{\underline{Solution:}}}

       \text{In the figure it is given that:}

       BD = 5 \text{ cm}

       AD = 12 \text{ cm}

       AC = 14 \text{ cm}

       BC = 15 \text{ cm}

       \text{Area of shaded region} = arADBC = ar\triangle{ABC} - ar\triangle ADB

       \text{In }\triangle{ADB}

       ar\triangle ADB= \text{Area of right triangle} = \dfrac12(\text{base})(\text{height})

\implies \text{base} = 12\text{ cm}, \text{height} = 5 \text{ cm}

\implies ar\triangle{ADB} = \dfrac12(12)(5)

\implies ar\triangle{ADB} = 6 \times 5

\implies ar\triangle ADB = 30 \text{ cm}^{2}

       \text{Applying pythagorus theorem:}

\implies AD^{2} + BD^{2} = AB^{2}

\implies (12)^{2} + (5)^{2} = AB^{2}

\implies 144 + 25 = AB^{2}

\implies 169 = AB^{2}

\implies \sqrt{169} = AB

\implies +13,-13 = AB

       \text{Since, length cannot be negative}

\implies 13 \text{ cm} = AB

       \text{In }\triangle{ABC}

       \text{Applying Heron's formula}

\implies \sqrt{s(s-a)(s-b)(s-c)} = \text{ Area of triangle}

       \text{In our case:}

       a = AB = 13 \text{ cm}

       b = AC = 14\text{ cm}

       c = BC = 15\text{ cm}

       s = \dfrac{a + b + c}{2} = \dfrac{13 + 14 + 15}{2} = \dfrac{42}{2} = 21 \text{ cm}

\implies ar\triangle{ABC}=\sqrt{21(21-13)(21-14)(21-15)}

\implies ar\triangle{ABC}=\sqrt{21(8)(7)(6)}

\implies ar\triangle{ABC}=\sqrt{7056}

\implies ar\triangle{ABC}=+ 84,-84

       \text{Since, area cannot be negative}

\implies ar\triangle{ABC}=84 \text{ cm}^{2}

\implies \text{Area of shaded region} = arADBC = ar\triangle{ABC} - ar\triangle ADB

\implies arADBC  = 84 - 30

\implies \boxed{arADBC  = 54 \text{ cm}^{2}}

Attachments:
Similar questions