calculate the size of all angles marked with variables in the following diagrams. give reasons
Answers
Answer:
Step-by-step explanation:
Step-by-step explanation:
a. ∠a=112° ( interior alternate angles are equal )
∠a=∠b ( vertically opposite angles)
∠b=112°
b. 45°+105°+y=180°(angle sum property of a triangle)
y = 180°-150°
∠y=30°
∠z=45° (interior alternate angles are equal)
x+y+z=180° (Linear Pair)
x+30+45=180
x=180-75
∠x=105°
c. ∠c=40° (Vertically opposite angles)
∠e=∠c (interior alternate angles)
∠e=40°
∠e+∠d+72=180°(angle sum property of a triangle)
∠d+40°+72°=180°
∠d=180°-112°
∠d=62°
∠d=∠a(vertically opposite angles)
∠a=62°
∠a+∠b+40°=180°(Linear pair)
60°+∠b+40°=180°
∠b=180°-100°
∠b=80°
d. ∠a=39°(interior alternate angle)
∠b+39°+39°=180°(angle sum property of a triangle)
∠b=180°-108°
∠b=72°
e.∠x+110=180°(Linear pair)
∠x=80°
∠x=∠y(corresponding angles)
∠y=80°
∠y+∠z=180°(angles on the same side of transversal)
∠z=180°-80°
∠z=100°
f.∠y=60°(interior alternate angles)
∠x=45°(interior alternate angles)
g.∠y=60°(corresponding angles)
∠z+98=180°(Linear pair)
∠z=180-98
∠z=82°
∠x=∠z(corresponding angles)
∠x=82°
h.∠x=42°(interior alternate angles)
∠z=65°(interior alternate angles)
∠x+∠y=180(Linear pair)
42°+∠y=180°
∠y=138°
i.∠a=40°(interior alternate angles)
∠a+∠b=180°(linear pair)
∠b=180°-40°
∠b=140°
∠d+105°=180°(linear pair)
∠d=180°-105°
∠d=75°
∠c=∠d(corresponding angles)
∠c=75°
∠e=105°(corresponding angles)
- Interior alternate angles are formed when a transversal intersects two coplanar lines.
- Corresponding angles are formed on the same side of one or two lines cut by a transversal.
- Vertically opposite angles are opposite angles formed by intersecting lines.
Learn more about angle sum property and vertically opposite angles by clicking on the links given below-
https://brainly.in/question/149661?referrer=searchResults
https://brainly.in/question/1146757?referrer=searchResults