Physics, asked by hancykto920, 10 months ago

Calculate the time needed for a net force of 5n to change the velocity of a 10kg of mass by 2m/s is

Answers

Answered by shadowsabers03
16

Given,

  • Force applied, \sf{F=5\ N}
  • Mass of the body, \sf{m=10\ kg}
  • Change in velocity due to the force, \sf{\Delta v=2\ m\,s^{-1}}
  • The time needed for the force to change the velocity \sf{=\Delta t\quad (Say)}

The change in momentum of the body due to the force is,

\displaystyle\longrightarrow\sf{\Delta p=m\cdot\Delta v}

\displaystyle\longrightarrow\sf{\Delta p=10\times2}

\displaystyle\longrightarrow\sf{\Delta p=20\ N\,s}

By Newton's Second Law of Motion, we have,

\displaystyle\longrightarrow\sf{F=\dfrac{\Delta p}{\Delta t}}

Then,

\displaystyle\longrightarrow\sf{\Delta t=\dfrac{\Delta p}{F}}

\displaystyle\longrightarrow\sf{\Delta t=\dfrac{20}{5}}

\displaystyle\longrightarrow\sf{\underline{\underline{\Delta t=4\ s}}}

Hence the force needed 4 seconds to change the velocity of the body by \sf{2\ m\,s^{-1}.}

Answered by Anonymous
19

Solution :

Given:

  • Net force applied on body = 5N
  • mass of body = 10kg
  • Change in velocity = 2mps

To Find:

  • Time needed to change the velocity of body

Formula:

✏ As per Newton's second law of motion

 \bigstar \:  \boxed{ \tt{ \pink{ \large{F \times  \triangle{t} =  \triangle{P}}}}} \:  \bigstar

Terms indication:

  • F denotes applied force
  • Δt denotes time interval
  • ΔP denotes change in momentum

Calculation:

 \twoheadrightarrow \sf \: F \times  \triangle{t} = m \times  \triangle{v} \\  \\  \twoheadrightarrow \sf \: 5 \times  \triangle{t} = 10 \times 2 \\  \\  \twoheadrightarrow \sf \:  \triangle{t} =  \frac{20}{5}  \\  \\  \twoheadrightarrow \:  \boxed{ \tt{ \purple{ \large{ \triangle{t} = 4 \: sec}}}}

Additional information:

  • Momentum is a vector quantity.
  • Vector quantity has both magnitude as well as direction.
Similar questions