Calculate the two longest wavelength of the radiation emitted when hydrogen atom make transition from higher state to n=2
Answers
E=hv
(Where EEE is energy, hhh is Planck’s constant, and vvv is the frequency)
E7−E6=72−RH−62−RH
(simplify by finding a common denominator)
−RH49−−RH36=13RH1764\dfrac{-R_H}{49}\,-\,\dfrac{-R_H}{36}\,=\,\dfrac{13R_H}{1764}49−RH−36−RH=176413RH
v=hE
v=13RH1764hv\,=\,\dfrac{13R_H}{1764h}v=1764h13RH
v=131764×2.179×10−18J6.626×10−34J⋅sv\,=\,\dfrac{13}{1764}\times \dfrac{2.179\times 10^{-18}\text{J}}{6.626\times 10^{-34}\text{J}\cdot \text{s}}v=176413×6.626×10−34J⋅s2.179×10−18J
v=2.42×1013v\,=\,2.42\times 10^{13}v=2.42×1013 /s
λ=vc
(Where λ\lambdaλ is the wavelength, ccc is the speed of light, vvv is the frequency)
λ=2.998×108m/s2.42×1013/s\lambda\,=\,\dfrac{2.998\times 10^8\text{m/s}}{2.42\times 10^{13}/s}λ=2.42×1013/s2.998×108m/s
λ=1.238×10−5\lambda\,=\,1.238\times 10^{-5}λ=1.238×10−5 m
Final Answer:
The longest wavelength is 1.238×10−5 1.238\times 10^{-5}1.238×10−5 m
BeBrainly
Answer:
E=hv
(Where EEE is energy, hhh is Planck’s constant, and vvv is the frequency)
E7−E6=72−RH−62−RH
(simplify by finding a common denominator)
−RH49−−RH36=13RH1764\dfrac{-R_H}{49}\,-\,\dfrac{-R_H}{36}\,=\,\dfrac{13R_H}{1764}49−RH−36−RH=176413RH
v=hE
v=13RH1764hv\,=\,\dfrac{13R_H}{1764h}v=1764h13RH
v=131764×2.179×10−18J6.626×10−34J⋅sv\,=\,\dfrac{13}{1764}\times \dfrac{2.179\times 10^{-18}\text{J}}{6.626\times 10^{-34}\text{J}\cdot \text{s}}v=176413×6.626×10−34J⋅s2.179×10−18J
v=2.42×1013v\,=\,2.42\times 10^{13}v=2.42×1013 /s
λ=vc
(Where λ\lambdaλ is the wavelength, ccc is the speed of light, vvv is the frequency)
λ=2.998×108m/s2.42×1013/s\lambda\,=\,\dfrac{2.998\times 10^8\text{m/s}}{2.42\times 10^{13}/s}λ=2.42×1013/s2.998×108m/s
λ=1.238×10−5\lambda\,=\,1.238\times 10^{-5}λ=1.238×10−5 m
Final Answer:
The longest wavelength is 1.238×10−5 1.238\times 10^{-5}1.238×10−5 m
Explanation: