Chemistry, asked by ammu1312005, 2 months ago

Calculate the uncertainty in the velocity of a cricket ball of mass 130 g, if the uncertainty in its
position is of the order of 1.2 A0.

Answers

Answered by nirman95
20

Given:

The uncertainty in the position is of the order of 1.2 A°. Mass is 130 g.

To find:

Uncertainty in velocity?

Calculation:

Applying Heisenberg's Uncertainty Principle:

 \therefore \: \Delta x \times \Delta p =  \dfrac{h}{4\pi}

 \implies \: \Delta x \times(m \Delta v) =  \dfrac{h}{4\pi}

 \implies \: (1.2 \times  {10}^{ - 10} ) \times( \dfrac{130}{1000}   \times \Delta v) =  \dfrac{h}{4\pi}

 \implies \: (1.2 \times  {10}^{ - 10} ) \times( \dfrac{13}{100}   \times \Delta v) =  \dfrac{h}{4\pi}

 \implies \: 0.09\times  {10}^{ - 12}  \times \Delta v =  \dfrac{h}{4\pi}

 \implies \: 9\times  {10}^{ - 14}  \times \Delta v =  \dfrac{h}{4\pi}

 \implies \: 9\times  {10}^{ - 14}  \times \Delta v =  \dfrac{6.63 \times  {10}^{ - 34} }{4\times 3.14}

 \implies \: 9\times  {10}^{ - 14}  \times \Delta v =  0.52 \times {10}^{ - 34}

 \implies \: \Delta v =  0.058\times {10}^{ - 20}

 \implies \: \Delta v =  5.8\times {10}^{ - 22}  \: m/s

So, uncertainty in velocity is 5.8 × 10^(-22) m/s.

Answered by TheDarkPhoenix
6

Solution:

By using Heisenberg's Uncertainty Principle,

\bullet \: {\underline{\boxed{\mathcal{\pmb{\blue{\quad \delta x \times \delta p =  \frac{h}{4 \pi} }}}}}}

Substituting values,

\leadsto\rm{ \delta x \times (m \delta v) =  \frac{h}{4\pi} } \\  \\ \leadsto\rm{(1.2 \times  {10}^{ - 10}  \times ( \frac{130}{1000}  \times  \delta v) =  \frac{h}{4\pi} } \\  \\ \leadsto\rm{(1.2 \times  {10}^{ - 10}  \times ( \frac{13}{100}  \times  \delta v) =  \frac{h}{4\pi} } \\  \\ \leadsto\rm{0.09 \times  {10}^{ - 12}  \times  \delta v =  \frac{h}{4\pi} } \\  \\ \leadsto\rm{9 \times  {10}^{ - 14}  \times  \delta v =  \frac{h}{4\pi} } \\  \\ \leadsto\rm{9 \times  {10}^{ - 14}  \times  \delta v =  \frac{6.33  \times  {10}^{ - 34} }{4 \times 3.14} } \\  \\ \leadsto\rm{9 \times  {10}^{ - 14}  \times  \delta v = 0.52 \times  {10}^{ - 34} } \\  \\ \leadsto\rm{ \delta v = 0.058 \times  {10}^{20} }

════════ ✥.❖.✥ ════════

\longrightarrow {\mathcal{\sf{\red{\delta v = 5.8 \times  {10}^{ - 22} m/s }}}} \: \bigstar

Similar questions