calculate the value of x in each of the following figures
Answers
Find The Value of X in the figure ?
➪ Angle B = 120°+ X . [Liner pair found]
a Liner pair = 180°
So, 120°+X = 180°
x= 180°-120°= 60°
Ans:- Angle 1 = 60°
➪ Angle C = 110°+X. [ Linear pair found]
A Liner pair =180 °
So, 110°+X=180°
X = 180°-110°=70°
Ans :- Angle 2 =70°
To Find :-
∆3 sides -2 × 180°
= 3 - 2× 180°
= 1×180° =180°
:- Given to find interior Angle .
So ,
A+B+C = 180°
x + 60° + 70 ° = 180 °
x + 130 ° = 180 °
x = 180 °-130°
x = 50 °
The present X angle is 50°
Let's Check :-
A+B+C = 180°
= 50°+60°+70° = 180°
= 110°+70° =180°
= 180°=180°
This Statement is correct ✔️
Answer:
- The measure of ∠x is 50°.
Step-by-step explanation:
In the figure, ABC is a triangle, ED is a line segment passing on BC.
We have :
∠EBA + 1 = 180°
- [∵ Linear pair]
120° + 1 = 180°
1(∠ABC) = 180° - 120°
∴ ∠ABC = 60°
Also, we have:
∠ACD + 2 = 180°
- [∵ Linear pair]
2(∠ACB) = 180° - 110°
∴ ∠ACB = 70°
Now, In ΔABC:
∠ABC + ∠ACB + ∠BAC(x) = 180°
- [∵ Angle sum property]
⇒ 60° + 70° + x = 180°
⇒ 130° + x = 180°
⇒ x° = 180° - 130°
∴ x° = 50°
Verification :
- Angle sum property
∠ABC + ∠ACB + ∠BAC(x) = 180°
⇒ 60° + 70° + 50° = 180°
⇒ 130° + 50° = 180°
⇒ 180° = 180°