Physics, asked by Bhawnadhingra4379, 9 months ago

Calculate the velocity of ejected electron from the metal surface when light of frequency 2×10^15Hz falls on the metal surface and the threshold frequency is 7×10^14hz for metal?

Answers

Answered by nirman95
4

Given:

A light of frequency 2×10¹⁵ Hz falls on the metal surface and the threshold frequency is 7×10¹⁴ hz for metal.

To find:

Velocity of ejected electrons ?

Calculation:

Applying Einstein's Photo-electric Effect Equation:

 \rm \: KE =  h \nu -  w_{0}

 \rm  \implies\: KE =  h \nu -   h\nu_{0}

 \rm  \implies\: KE =  h (\nu -   \nu_{0})

 \rm  \implies\:  \dfrac{1}{2}m {v}^{2}  =  h (\nu -   \nu_{0})

 \rm  \implies\:  \dfrac{1}{2}m {v}^{2}  =  h (20 \times  {10}^{14}  -   7 \times  {10}^{14} )

 \rm  \implies\:  \dfrac{1}{2}m {v}^{2}  =  h (13 \times  {10}^{14}  )

 \rm  \implies\:  \dfrac{1}{2}m {v}^{2}  =  6.6 \times  {10}^{ - 34}  \times 13 \times  {10}^{14}

 \rm  \implies\:  {v}^{2}  =   \dfrac{2 \times 6.6 \times  {10}^{ - 34}  \times 13 \times  {10}^{14}  }{9.1 \times  {10}^{ - 31} }

 \rm  \implies\:  {v}^{2}  = 18.94 \times  {10}^{11}

 \rm  \implies\:  v  = 13.76 \times  {10}^{5}  \: m {s}^{ - 1}

So, velocity of electron is 13.76 × 10 m/s.

Answered by krohit68272
0

Answer:

Given:</p><p></p><p>A light of frequency 2×10¹⁵ Hz falls on the metal surface and the threshold frequency is 7×10¹⁴ hz for metal.</p><p></p><p>To find:</p><p></p><p>Velocity of ejected electrons ?</p><p></p><p>Calculation:</p><p></p><p>Applying Einstein's Photo-electric Effect Equation:</p><p></p><p>\rm \: KE = h \nu - w_{0}KE=hν−w0</p><p></p><p>\rm \implies\: KE = h \nu - h\nu_{0}⟹KE=hν−hν0</p><p></p><p>\rm \implies\: KE = h (\nu - \nu_{0})⟹KE=h(ν−ν0)</p><p></p><p>\rm \implies\: \dfrac{1}{2}m {v}^{2} = h (\nu - \nu_{0})⟹21mv2=h(ν−ν0)</p><p></p><p>\rm \implies\: \dfrac{1}{2}m {v}^{2} = h (20 \times {10}^{14} - 7 \times {10}^{14} )⟹21mv2=h(20×1014−7×1014)</p><p></p><p>\rm \implies\: \dfrac{1}{2}m {v}^{2} = h (13 \times {10}^{14} )⟹21mv2=h(13×1014)</p><p></p><p>\rm \implies\: \dfrac{1}{2}m {v}^{2} = 6.6 \times {10}^{ - 34} \times 13 \times {10}^{14}⟹21mv2=6.6×10−34×13×1014</p><p></p><p>\rm \implies\: {v}^{2} = \dfrac{2 \times 6.6 \times {10}^{ - 34} \times 13 \times {10}^{14} }{9.1 \times {10}^{ - 31} }⟹v2=9.1×10−312×6.6×10−34×13×1014</p><p></p><p>\rm \implies\: {v}^{2} = 18.94 \times {10}^{11}⟹v2=18.94×1011</p><p></p><p>\rm \implies\: v = 13.76 \times {10}^{5} \: m {s}^{ - 1}⟹v=13.76×105ms−1</p><p></p><p>So, velocity of electron is 13.76 × 10⁵m/s.</p><p></p><p>

solution by rohit.

Similar questions