Math, asked by riyabaliyan7781, 1 year ago

calculate the wavlenght from the balmer formula when n=3

Answers

Answered by QGP
47
Hey There, 

For Hydrogen Atom, for Balmer Series, the formula for wavelength is given by: 

\frac{1}{\lambda}=R\left(\frac{1}{2^2}-\frac{1}{n^2}\right) \\ \\ \\ \implies \frac{1}{\lambda} = R\left(\frac{1}{4}-\frac{1}{9}\right) \\ \\ \\ \implies \frac{1}{\lambda} = R\times \frac{5}{36} \\ \\ \\ \implies \lambda = \frac{36}{5R} \\ \\ \\ \implies \lambda = \frac{36}{5\times 1.097\times 10^7} \\ \\ \\ \implies \lambda \approx 32.82 \times 10^{-7} \, m \\ \\ \\ \implies \boxed{\lambda \approx 3.28 \times 10^{-6} \, m}


Hope it helps
Purva
Brainly Community

Answered by pinquancaro
12

Answer:

The wavelength is  \lambda \approx 3.28 \times 10^{-6} \, m      

Step-by-step explanation:

To find : Calculate the wavelength from the balmer formula when n=3 ?

Solution :

As n=3 i.e. for Hydrogen Atom,

Balmer Series, the formula for wavelength is given by

\frac{1}{\lambda}=R\left(\frac{1}{2^2}-\frac{1}{n^2}\right)

\frac{1}{\lambda} = R\left(\frac{1}{4}-\frac{1}{9}\right)

\frac{1}{\lambda} = R\times \frac{5}{36}

\lambda = \frac{36}{5R}

Substitute, R=1.097\times 10^7

\lambda = \frac{36}{5\times 1.097\times 10^7}

\lambda \approx 32.82 \times 10^{-7}

\lambda \approx 3.28 \times 10^{-6} \, m

Therefore, The wavelength is  \lambda \approx 3.28 \times 10^{-6} \, m

Similar questions