Physics, asked by NIKITA0070, 4 months ago

Calculate the work required to be done to stop

a car of mass 1200 kg moving at a velocity

80 km/h.​

Answers

Answered by PharohX
14

Explanation:

GIVEN

 \sf \: Mass \: of \: car \:  \:  = 1200 \: kg

 \sf \: Velocity \: of \: car \:  = 80 \: km   \setminus \: h  \\  \\  =  \sf \: 80 \times  \frac{1000}{3600}  \: m  \setminus \: s \\  \\  =  \sf \frac{200}{9} \:  m \setminus \: s

 \sf \: we \: know \: when \: an \: \: object \:  \: is \:  \: moving \:  \\  \sf \: it \:  \: posses \: kinetic \: energy \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: so \: to \: \: stop \: the \: car \: we \:  \: put \: \: the \: same \: \\  \sf work \: done \: as \: kinetic \:  \: energy \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: work \: done  = kinetic \: energy\:  \\  \sf \: Kinetic  \: Energy  =  \frac{1}{2} m {v}^{2} \:  \:  \:  \:  \:  \:  \:  \:    \\

 \sf \: Kinetic \:  Energy  =  \frac{1}{2}  \times (1200) \times ( \frac{200}{9} ) { }^{2}  \\  \\  =  \sf \: 600 \times  \frac{200 \times 200}{9 \times 9}  \\  \\  =  \sf \: 296296.3 \: joule

  \sf \:  \: hence \: work \: done \: to \:  \: stop \: the \: car \\  \sf \: is \: 296296.3 \: joule \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answered by hannu15102006
4

hope it helps

pls mark me the brainliest

Attachments:
Similar questions