Math, asked by alG97, 2 months ago

Calculus 3 Review Planes

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given planes in vector form is given by

 \vec{r}.( 3\hat{i} - 2\hat{j} + 5\hat{k}) =  - 8 \\  \vec{r}.( 5\hat{i} - \hat{j} + 3\hat{k}) = 9

Here,

 \vec{n_{1}} =  3\hat{i} - 2\hat{j} + 5\hat{k} \\  \vec{n_{2}} =  5\hat{i} - \hat{j} + 3\hat{k}

So, acute angle between them is given by

 \cos( \theta) =  \bigg |  \frac{ \vec{n_{1} }.\vec{n_{2} }}{ |\vec{n_{1} }| . |\vec{n_{2} }| } \bigg|   \\

 \implies \cos( \theta) =  \bigg |  \frac{ (3 \hat{i} - 2 \hat{j} + 5 \hat{k}).(5 \hat{i} -  \hat{j} + 3 \hat{k})}{ |3 \hat{i} - 2 \hat{j} + 5 \hat{k}| . |5 \hat{i} - \hat{j} + 3 \hat{k}| } \bigg|   \\

 \implies \cos( \theta) =  \bigg |  \frac{(15 + 2 + 15)}{  \sqrt{9  + 4 + 25} .  \sqrt{25  + 1 + 9 }} \bigg|   \\

 \implies \cos( \theta) =  \bigg |  \frac{ 32 }{  \sqrt{38} .  \sqrt{35}} \bigg|   \\

 \implies \cos( \theta) =  \bigg |  \frac{ 32}{  \sqrt{1330} } \bigg|   \\

 \implies  \theta=  \cos^{ - 1}   \bigg( \frac{ 32}{  \sqrt{1330} } \bigg)   \\

Similar questions