Math, asked by vinupreddy2005, 1 year ago

can answer this math question about rationalization ​

Attachments:

Answers

Answered by DaIncredible
0

a =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\  \\

Rationalizing the denominator we get:

 =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  =  \frac{ {(  \sqrt{3}  +  \sqrt{2}  )}^{2} }{( \sqrt{3}  -  \sqrt{2})( \sqrt{3}   +  \sqrt{2}  )}  \\  \\  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\  =  \bf 5 + 2 \sqrt{6}

Similarly,

b =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  =  \bf 5 - 2 \sqrt{6}

Now,

L.H.S.

a² + b²

 =  {(5 + 2 \sqrt{6} )}^{2}  +  {(5 - 2 \sqrt{6} )}^{2}  \\  \\  = (25 + 24 + 20 \sqrt{6} ) + (25 + 24 - 20 \sqrt{6} ) \\  \\  = 49 + 20 \sqrt{6} + 49 - 20 \sqrt{6}   \\  \\  = \bf 98

L.H.S = R.H.S

Hence proved

Similar questions