can any one can solve it
Attachments:
Answers
Answered by
50
To Prove :-
- (cotA - cosA) / (cotA + cosA) = (cosecA - 1)/(cosecA + 1)
Formula used :-
- cotA = (cosA/sinA)
- (1/sinA) = cosecA
Solution :-
Solving LHS , we get,
→ (cotA - cosA) / (cotA + cosA)
Putting cotA = (cosA/sinA) in Numerator & Denominator we get,
→ [ (cosA/sinA) - cosA ] / [ (cosA/sinA) + cosA ]
Taking cosA common From Numerator & Denominator now,
→ cosA [ (1/sinA) - 1 ] / cosA [ (1/sinA) + 1 ]
→ [ (1/sinA) - 1 ] / [ (1/sinA) + 1 ]
Putting (1/sinA) = cosecA now, we get,
→ (cosecA - 1) / (cosecA + 1) = RHS (Hence Proved).
Answered by
8
Solution
Formula
Now put same value in equation no 1
Take L.H.S
Take R.H.S
Hence Proved
Similar questions