Math, asked by sahil303981, 1 year ago

can any one do this pizzzzzzzzzzzzzzzzzzzzz

Attachments:

Answers

Answered by JinKazama1
5
If
 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 27


Steps:a)
( {x}^{2}  +  \frac{1}{ {x}^{2} } ) = 27 \\  =  >  {(x +  \frac{1}{x}) }^{2}  - 2 = 27 \\  =  >  ( {x +  \frac{1}{x} })^{2}  = 29 \\  =  > (x +  \frac{1}{x} ) =  +  \sqrt{29}  \: or \:  -  \sqrt{29}


b)
( {x  -   \frac{1}{x} })^{2}  + 2 = 27 \\  =  > ( {x -  \frac{1}{x} })^{2}  = 25 \\  =  > (x -  \frac{1}{x} ) =  + 5 \: or \:  - 5
Answered by rohitkumargupta
4
\sf{GIVEN:-}\\\sf{x^2 + \frac{1}{x^2} = 27}-------------( 1 )

\Large{\sf{NOW, \:\: we \:\:know}}

a). \sf{(x + 1/x)^2 = x^2 + 1/x^2 + 2x * 1/x }\\\\\sf{(x^2 + 1/x^2) + 2 }\\\\\sf{27 + 2}
\sf{\to\to\to\to\to\to\to\therefore\boxed{x^2 + 1/x^2 = 27}}

\sf{(x + 1/x)^2 = 29}\\\\\sf{x + 1/x = ±\sqrt{29}}

\Large{\sf{ \:\: we \:\:know}}

b). \sf{(x - 1/x)^2 = x^2 + 1/x^2 - 2x * 1/x }\\\\\sf{(x^2 + 1/x^2) - 2 }\\\sf{=27 - 2}
\sf{\to\to\to\to\to\to\to\therefore\boxed{x^2 + 1/x^2 = 27}}

\sf{(x - 1/x)^2 = 25}\\\\\sf{x - 1/x = ±5}
Similar questions