can any one prove this plz
trigonometric sums 10 th std
Attachments:
Answers
Answered by
3
Answer:
Step-by-step explanation:
(Cos70 / sin20 )+ ((cos55 cosec35 )/ (tan5 tan25 tan45 tan65 tan85))
=(cos(90-20) /sin20)+(cos55 cosec35)/(tan5 tan25 tan45 tan(90-25) tan(90-5))
= (sin20/ sin20) + (cos55 cosec35)/ (tan5 tan25 tan45 cot25 cot5)
= 1+ (cos55 cosec35)/(1)
= 1+ (cos55/sin35)
= 1+(sin(90-35)/sin35)
= 1+(sin35/sin35)
= 1+1
= 2
Attachments:
nithya6755:
Hope it helps you my friend
Answered by
3
Hello user !
Solution:-
Firstly , Some complementary dearivations to be seen.
sin (90 -A)°= cosA°
tan(90-A)°= cotA°
Now in the given question:
=cos70°/sin20 °+. ( cos 55°*cosec 35° )/(tan5°*tan25°*tan65°*tan85°)
=cos (90-20)°/sin 20° + ( cos( 90 - 35) °*cosec35)° / (tan (90 -5)°*tan 5° *tan (90-65)°* tan 65)°
=sin 20° /sin20° + sin 35° * cosec 35° /(cot5°*tan 5° * tan 65°* cot 65°)
{sin A°* cosec A° =1}
=1+. 1/ (1*1)
=1+1
=2 i.e R.H.S
Hope it helps ❤ ❤
Solution:-
Firstly , Some complementary dearivations to be seen.
sin (90 -A)°= cosA°
tan(90-A)°= cotA°
Now in the given question:
=cos70°/sin20 °+. ( cos 55°*cosec 35° )/(tan5°*tan25°*tan65°*tan85°)
=cos (90-20)°/sin 20° + ( cos( 90 - 35) °*cosec35)° / (tan (90 -5)°*tan 5° *tan (90-65)°* tan 65)°
=sin 20° /sin20° + sin 35° * cosec 35° /(cot5°*tan 5° * tan 65°* cot 65°)
{sin A°* cosec A° =1}
=1+. 1/ (1*1)
=1+1
=2 i.e R.H.S
Hope it helps ❤ ❤
Similar questions
Chemistry,
6 months ago
Math,
6 months ago
Social Sciences,
6 months ago
Physics,
1 year ago
Business Studies,
1 year ago