Math, asked by Anonymous, 6 months ago

can any one solve this question please ​

Attachments:

Answers

Answered by senboni123456
1

Answer:

(α+β)=π/4

Step-by-step explanation:

We have,

 \tan( \alpha )  =  \frac{1}{1 +  {2}^{ - x} }  \:  \: and \:  \:  \tan( \beta )  =  \frac{1}{1 +  {2}^{x + 1} }

Now, we have,

 \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha ) \tan( \beta )  }

 =  >  \tan( \alpha  +  \beta )  =  \frac{ \frac{1}{1 +  {2}^{ - x} }  +  \frac{1}{1 +  {2}^{x + 1} } }{1 -  \frac{1}{(1 +  {2}^{ - x})(1 +  {2}^{x + 1})  } }

 =  >  \tan( \alpha  +  \beta )  =  \frac{ \frac{ {2}^{x} }{1 +  {2}^{x} }  +  \frac{1}{1 +  {2}^{x + 1} } }{1 -  \frac{ {2}^{x} }{(1 +  {2}^{x})(1 +  {2}^{x + 1})  } }

 =  >  \tan( \alpha  +  \beta ) =  \frac{ \frac{ {2}^{x} (1 +  {2}^{x + 1}) + (1 +  {2}^{x})  }{(1 +  {2}^{x} )(1 +  {2}^{x + 1} )} }{ \frac{(1 +  {2}^{x})(1 +  {2}^{x + 1}) -  {2}^{x}   }{(1 +  {2}^{x})(1 +  {2}^{x + 1} ) } }

 =  >  \tan( \alpha  +  \beta )  =   \frac{{2}^{x} +  {2}^{2x + 1} +  {2}^{x} + 1 }{1 +  {2}^{x + 1} +  {2}^{x}  +  {2}^{2x + 1} -  {2}^{x}  }

 =  >  \tan( \alpha  +  \beta ) =  \frac{ {2}^{x + 1} +  {2}^{2x + 1}  + 1}{ {2}^{x + 1}  +  {2}^{2x + 1}  + 1}

 =  >  \tan( \alpha  +  \beta )  = 1 =  >  \alpha  +  \beta  =  \frac{\pi}{4}

Similar questions