Can any student solve this question. my challenge Q no 2
Attachments:
Answers
Answered by
3
Firstly,finding y
3^x-1=3^2
Since base is some so power will also be same
x-1=2
x=3
Now,
4^y+2=
3^x-1=3^2
Since base is some so power will also be same
x-1=2
x=3
Now,
4^y+2=
Attachments:
Aayupas:
is answer right
Answered by
3
If 3^( x - 1 ) = 9 , 4^(y + 2 ) = 64 .
Find the value of (y / x ) - ( x/ y) .
Find the value of 'x':
--------------------------
3^( x - 1 ) = 9
3^(x - 1 ) = ( 3)^2
x - 1 = 2 => x = 3
Find the value of 'y' :
---------------------------
4^( y + 2 ) = 64
4^( y + 2 ) = ( 4 )^3
y + 2 = 3 => y = 1
Find the value of ( y/ x ) - ( x / y ) :
now put value of 'x' and 'y' in the given expression:
( y / x) - ( x / y ) = (1 / 3 ) - ( 3/ 1 )
=( 1 - 9 )/ 3 = - 8/ 3
therefore,
( y/ x ) - ( x / y ) = - 8 / 3
Answer : - 8/ 3
--------------------------------------------------------
Find the value of (y / x ) - ( x/ y) .
Find the value of 'x':
--------------------------
3^( x - 1 ) = 9
3^(x - 1 ) = ( 3)^2
x - 1 = 2 => x = 3
Find the value of 'y' :
---------------------------
4^( y + 2 ) = 64
4^( y + 2 ) = ( 4 )^3
y + 2 = 3 => y = 1
Find the value of ( y/ x ) - ( x / y ) :
now put value of 'x' and 'y' in the given expression:
( y / x) - ( x / y ) = (1 / 3 ) - ( 3/ 1 )
=( 1 - 9 )/ 3 = - 8/ 3
therefore,
( y/ x ) - ( x / y ) = - 8 / 3
Answer : - 8/ 3
--------------------------------------------------------
Similar questions