Math, asked by harisreemedicalskylm, 1 month ago

Can anybody give the right answer i am too confused!​

Attachments:

Answers

Answered by MysticSohamS
4

Answer:

hey here is your answer

pls mark it as brainliest pls

Step-by-step explanation:

so \: here \:  \\ x =  \frac{1}{2} ( \sqrt{a}  +  \frac{1}{ \sqrt{a} } ) \\  =  \frac{1}{2} (  \frac{( \sqrt{a} ) {}^{2} + 1 }{ \sqrt{a} } ) \\ \\   =  \frac{1}{2} ( \frac{a + 1}{ \sqrt{a} } ) \\  \\ ie \:  \:  \: x =  \frac{a + 1}{2 \sqrt{a} }

so \: first \: finding \: value \: of \:  \sqrt{x  {}^{2}   - 1}  \\  \sqrt{x {}^{2}  - 1}  =  \sqrt{( \frac{a + 1}{2 \sqrt{a}   }) {}^{2} - 1  }  \\  \\  =  \sqrt{( \frac{a {}^{2} + 1 + 2a }{4a}) - 1 }  \\  \\  =  \sqrt{ \frac{a {}^{2} + 1 + 2a - 4a }{4a} }  \\  \\  =  \sqrt{ \frac{a {}^{2} - 2a + 1 }{4a} }  \\  \\  =  \sqrt{ \frac{(a - 1) {}^{2} }{(2 \sqrt{a} ) {}^{2} }   }  \\  \\  =  \frac{a - 1}{2 \sqrt{a} }

so \: now \: substituting \: this \: value \: in \: to \: proven \: part \\ we \: get \\   \frac{ \sqrt{x {}^{2}  - 1} }{x -  \sqrt{x {}^{2}  - 1} }  \\  \\  =    \frac{ \frac{a - 1}{2 \sqrt{a} } }{ \frac{a + 1}{2 \sqrt{a}  }  -  \frac{(a - 1)}{2 \sqrt{a} } }  \\  \\  =  \frac{ \frac{ \frac{a - 1}{2 \sqrt{a} } }{a + 1 - (a - 1)} }{2 \sqrt{a} }  \\  \\  =  \frac{ \frac{ \frac{a - 1}{2 \sqrt{a} } }{a + 1 - a + 1} }{2 \sqrt{a} }  \\  \\  =  \frac{a - 1}{1 + 1}  \\  \\  =  \frac{a - 1}{2}  \\  \\ hence \: lhs = rhs \\ thus \: proved

Similar questions