Math, asked by yashchip41, 8 months ago

can anybody slove this​

Attachments:

Answers

Answered by sd200122
0

Answer:

c)

Step-by-step explanation:

Enter a problem...

Calculus Examples

Popular Problems

 

d/dx sin(e^(2x))

sin(e2x)sin(e2x)

Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f'(g(x))g'(x)f′(g(x))g′(x) where f(x)=sin(x)f(x)=sin(x) and g(x)=e2xg(x)=e2x.

To apply the Chain Rule, set u1u1 as e2xe2x.

ddu1[sin(u1)]ddx[e2x]ddu1[sin(u1)]ddx[e2x]

The derivative of sin(u1)sin(u1) with respect to u1u1 is cos(u1)cos(u1).

cos(u1)ddx[e2x]cos(u1)ddx[e2x]

Replace all occurrences of u1u1 with e2xe2x.

cos(e2x)ddx[e2x]cos(e2x)ddx[e2x]

Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f'(g(x))g'(x)f′(g(x))g′(x) where f(x)=exf(x)=ex and g(x)=2xg(x)=2x.

cos(e2x)(e2xddx[2x])

2e^2xcose^2x answer

Similar questions