can anyone answer this...
...
.
Answers
Solution :
- sinA/sinB = √3/2
=> sin²A/sin²B = 3/4
=> sin²A = 3sin²B/4 --i)
- cosA/cosB = √5/2
=> cos²A/cos²B = 5/4
=> cos²A = 5cos²B/4 --ii)
★ We know that
sin²θ + cos²θ = 1
∴ 3sin²B/4 + 5cos²B/4 = 1
=> 3sin²B + 5(1 - sin²B) = 4
=> 1 = 2sin²B
=> sinB = 1/√2
=> B = 45° , So cosB = cos45° = 1/√2
Now,
=> sinA/sinB = √3/2
=> sinA/(1/√2) = √3/2
=> sinA = √3/2 × √2
=> sinA = √6/2
Also,
=> cosA/cosB = √5/2
=> cosA/(1/√2) = √5/2
=> cosA = √5/2 × √2
=> cosA = √10/2
Now calculate 5tan²A and tan²B
=> 5tan²A + tan²B
=> 5sin²A/cos²A + sin²B/cos²B
=> 5(√6/2/√10/2)² + (1/√2/1/√2)²
=> 5(6/4 × 4/10) + 1
=> 5(3/5) + 1
=> 3 + 1
=> 4
∴ 5tan²A + tan²B = 4
Answer:
Hope this ans is helpful for you
Please brainlest my ans
Step-by-step explanation:
Thanks bhai
Bye tomarrow my exam and 25 sa ist board exam bye kal bat karta hai bhai
Good night sweet dreams
Love u bhai bye