Can anyone help me to get case based questions on Class 9 Maths Ch-7 Triangles. CBSE
Answers
Answer:
Important Questions & Solutions For CBSE Class 9 Chapter 7 (Triangles)
Q.1: ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA. Prove that
(i) ΔABD ≅ ΔBAC
(ii) BD = AC
(iii) ∠ABD = ∠BAC.
class 9 maths chapter 7 imp.ques.1
Solution:
As per given in the question,
∠DAB = ∠CBA and AD = BC.
(i) ΔABD and ΔBAC are similar by SAS congruency as
AB = BA (common arm)
∠DAB = ∠CBA and AD = BC (given)
So, triangles ABD and BAC are similar
i.e. ΔABD ≅ ΔBAC. (Hence proved).
(ii) As it is already proved,
ΔABD ≅ ΔBAC
So,
BD = AC (by CPCT)
(iii) Since ΔABD ≅ ΔBAC
So, the angles,
∠ABD = ∠BAC (by CPCT).
Q.2: AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.
class 9 maths chapter 7 imp.ques.2
Solution:
Given, AD and BC are two equal perpendiculars to AB.
To prove: CD is the bisector of AB
Proof:
Triangles ΔAOD and ΔBOC are similar by AAS congruency
Since:
(i) ∠A = ∠B (perpendicular angles)
(ii) AD = BC (given)
(iii) ∠AOD = ∠BOC (vertically opposite angles)
∴ ΔAOD ≅ ΔBOC.
So, AO = OB ( by CPCT).
Thus, CD bisects AB (Hence proved)
Step-by-step explanation:
hope it helps
mark me brilliant