Math, asked by nondu2003gmailcom, 11 months ago

can anyone help me with the 11 one? ​

Attachments:

Answers

Answered by Swarup1998
5
\underline{\texttt{Proof :}}

\mathrm{Now,\:\sqrt{\frac{1-cos\theta}{1+cos\theta}}}

\mathrm{=\sqrt{\frac{(1-cos\theta)(1-cos\theta)}{(1+cos\theta)(1-cos\theta)}}}

\mathrm{=\sqrt{\frac{1-2\:cos\theta+cos^{2}\theta}{1-cos^{2}\theta}}}

\mathrm{=\sqrt{\frac{1-2\:cos\theta+cos^{2}\theta}{sin^{2}\theta}}}

\mathrm{=\sqrt{\frac{1}{sin^{2}\theta}-\frac{2\:cos\theta}{sin^{2}\theta}+\frac{cos^{2}\theta}{sin^{2}\theta}}}

\mathrm{=\sqrt{cosec^{2}\theta-2\:cosec\theta\:cot\theta+cot^{2}\theta}}

\mathrm{=\sqrt{(cosec\theta-cot\theta)^{2}}}

\mathrm{=cosec\theta-cot\theta}

\to \boxed{\mathrm{\sqrt{\frac{1-cos\theta}{1+cos\theta}}=cosec\theta-cot\theta}}

\texttt{Hence, proved.}

nondu2003gmailcom: thanks a lot
Swarup1998: Happy to help! ☺
Similar questions