Math, asked by Green33, 1 month ago

Can anyone help me with this( preferably with steps) ​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:  \frac{ {sin}^{2} x}{ {(1 + cosx)}^{2} }  \: dx

We know,

 \red{\boxed{ \rm{ {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we can rewrite the above integral as

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:  \frac{1 -  {cos}^{2} x}{ {(1 + cosx)}^{2} }  \: dx

We know,

\red{\boxed{ \rm{ {x}^{2} -  {y}^{2}  = (x + y)(x - y)}}}

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:  \frac{(1 -  {cos}x)(1 + cosx)}{ {(1 + cosx)}^{2} }  \: dx

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:  \frac{1 -  {cos}x}{ {1 + cosx}}  \: dx

We know,

\red{\boxed{ \rm{1 - cos2x =  {2sin}^{2}x}}} \:  \: and \:  \: \red{\boxed{ \rm{1 + cos2x =  {2sin}^{2}x}}}

So, using these Identities, we get

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:   \frac{2 {sin}^{2}\dfrac{x}{2}  }{ {2cos}^{2}\dfrac{x}{2}  }   \: dx

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:   \frac{ {sin}^{2}\dfrac{x}{2}  }{ {cos}^{2}\dfrac{x}{2}  }   \: dx

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:   \ {tan}^{2} \frac{x}{2}  \: dx

We know,

\red{\boxed{ \rm{ {sec}^{2}x -  {tan}^{2}x = 1}}}

So, we get

\rm \:  =  \: \:\displaystyle\int_0^{ \dfrac{\pi}{2} } \:   (\ {sec}^{2} \frac{x}{2}  - 1) \: dx

Now, we know,

\red{\boxed{ \rm{\displaystyle\int \:  {sec}^{2}xdx = tanx +c}}} \:  \: and \:  \: \red{\boxed{ \rm{\displaystyle\int \: kdx = kx + c}}}

So, using these we get

\rm \:  =  \: \bigg(\dfrac{tan\dfrac{x}{2} }{\dfrac{1}{2} } - x\bigg)_0^{ \dfrac{\pi}{2} }

\rm \:  =  \: \bigg(2tan\dfrac{x}{2} - x\bigg)_0^{ \dfrac{\pi}{2} }

\rm \:  =  \: \bigg(2tan\dfrac{\pi}{4} - \dfrac{\pi}{2}\bigg) - (0 - 0)

\rm \:  =  \: 2 - \dfrac{\pi}{2}

\rm \:  =  \: \dfrac{4 - \pi}{2}

Hence,

 \red{\rm :\longmapsto\:\displaystyle\int_0^{ \dfrac{\pi}{2} }  \bf\:  \frac{ {sin}^{2} x}{ {(1 + cosx)}^{2} }  \: dx =  \frac{4 - \pi}{2} }

Additional Information :-

\red{\boxed{ \rm{\displaystyle\int \: sinx \: dx =  - cosx + c}}}

\red{\boxed{ \rm{\displaystyle\int \: cosx \: dx =  sinx + c}}}

\red{\boxed{ \rm{\displaystyle\int \:  {sec}^{2} x \: dx =  tanx + c}}}

\red{\boxed{ \rm{\displaystyle\int \:  {cosec}^{2} x  \: dx=   - cotx + c}}}

\red{\boxed{ \rm{\displaystyle\int \:  {cosec}x \: cotx \: dx =   - cosecx + c}}}

\red{\boxed{ \rm{\displaystyle\int \: secx \: tanx \: dx =  secx + c}}}

Similar questions