History, asked by smartartist, 19 days ago

can anyone help me with this question on call

what is algebraic sun of null and vectors in three dimensions​

Answers

Answered by sp9343803
0

Explanation:

In mathematics, given a vector space X with an associated quadratic form q, written (X, q), a null vector or isotropic vector is a non-zero element x of X for which q(x) = 0.

A null cone where {\displaystyle q(x,y,z)=x^{2}+y^{2}-z^{2}.}{\displaystyle q(x,y,z)=x^{2}+y^{2}-z^{2}.}

In the theory of real bilinear forms, definite quadratic forms and isotropic quadratic forms are distinct. They are distinguished in that only for the latter does there exist a nonzero null vector.

A quadratic space (X, q) which has a null vector is called a pseudo-Euclidean space.

A pseudo-Euclidean vector space may be decomposed (non-uniquely) into orthogonal subspaces A and B, X = A + B, where q is positive-definite on A and negative-definite on B. The null cone, or isotropic cone, of X consists of the union of balanced spheres:

{\displaystyle \bigcup _{r\geq 0}\{x=a+b:q(a)=-q(b)=r,a\in A,b\in B\}.}

{\displaystyle \bigcup _{r\geq 0}\{x=a+b:q(a)=-q(b)=r,a\in A,b\in B\}.}

The null cone is also the union of the isotropic lines through the origin.

Please mark me as brainliest answer

foll ow m e on inst agram

mr._prajapati_31

Similar questions