Math, asked by saluna, 1 year ago

can anyone please solve questions no. 2,3,6. tomorrow is my maths exam

Attachments:

Anonymous: should i solve 3 questions saluna. .
saluna: okk
saluna: your wish
Anonymous: okay. .
Anonymous: i solve all the 3 questions. .
saluna: thanku so much

Answers

Answered by Anonymous
4

2. Let the area of square - 1 be A₁ and the area of square - 2 be A₂

given that the sum of two areas = 468 cm²

⇒ A₁ + A₂ = 468 cm²

let the side of square - 1 be S₁ and the side of square -2 be S₂

we know that area of square = S²

⇒ (S₁)² + (S₂)² = 468 cm²

we know that perimeter of square is given by 4S

given that the difference of the Perimeter of square -1 and square - 2 is 24

⇒ 4S₁ - 4S₂ = 24

⇒ S₁ - S₂ = 6

squaring on both sides of above equation we get :

⇒  (S₁ - S₂)² = 36

⇒ (S₁)² + (S₂)² - 2S₁S₂ = 36

but we know that (S₁)² + (S₂)² = 468

⇒ 468 - 2S₁S₂ = 36

⇒ 2S₁S₂ = 432

Now let us consider the equation (S₁)² + (S₂)² = 468

let us add 2S₁S₂ on both sides of the above equation :

⇒ (S₁)² + (S₂)² + 2S₁S₂  = 468 + 2S₁S₂

⇒ (S₁ + S₂)² = 468 + 432

⇒ (S₁ + S₂)² = 900

⇒ (S₁ + S₂) = 30

and we know that (S₁ - S₂) = 6

adding both equations (S₁ - S₂) = 6 and (S₁ + S₂) = 30 we get :

⇒ (S₁ + S₂) + (S₁ - S₂) = 30 + 6

⇒ 2S₁ = 36

⇒ S₁ = 18

substituting S₁ = 18 in equation (S₁ - S₂) = 6

we get 18 - S₂ = 6

⇒  S₂ = 12

So the sides of two squares are 18 and 12

3. 1/(a + b + x) = 1/a + 1/b + 1/x

⇒ 1/(a + b + x) - 1/x = 1/a + 1/b

taking LCM on both sides we get :

⇒ (x - a - b - x)/x(a + b +x) = (a + b)/ab

⇒ -(a + b)/x(a + b +x) = (a + b)/ab

(a +b) on both sides get cancelled

⇒ -1/x(a + b +x) = 1/ab

⇒ -ab = xa + xb + x²

⇒ x² + ax +bx + ab = 0

⇒ x(x + a) + b(x + a) = 0

⇒ (x + a)(x + b) = 0

⇒ x = a or x = b

6. if a quadratic equation Ax² + Bx + C = 0 has equal roots then B² - 4AC = 0

in the above question we can notice that B = 2mnc , A = (1 + m²)n² , C = c² - a²

substituting the above values in B² - 4AC = 0 we get

⇒ 4m²n²c² - 4n²(1 + m²)(c² - a²) = 0

4n² is taken common and made zero

⇒ m²c² - (c² - a² + m²c² - m²a²) = 0

⇒ m²c² - c² + a² - m²c² + m²a² = 0

⇒ m²a² + a² = c²

⇒ a²(m² + 1) = c²

Similar questions