Math, asked by Anonymous, 3 days ago

Can anyone solve my integral + limit question?
\displaystyle\lim_{x\to 1} \dfrac{\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)\sin(x-1)}

Mordetor solve please.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x\to 1} \dfrac{ \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)\sin(x-1)} \\

If we substitute directly x = 1, we get indeterminant form

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x\to 1} \dfrac{ \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)^{2} \:  \dfrac{sin(x-1)}{x - 1} } \\

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{x\to 1} \dfrac{ \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)^{2} \: } \times \displaystyle\lim_{x\to 1} \frac{x - 1}{sin(x-1)}  \\

\rm \:  =  \: \displaystyle\lim_{x\to 1} \dfrac{ \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)^{2} \: } \times \displaystyle\lim_{x - 1\to 0} \frac{x - 1}{sin(x-1)}  \\

\rm \:  =  \: \displaystyle\lim_{x\to 1} \dfrac{ \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)^{2} \: } \times 1  \\

Now, on applying L Hospital Rule, we get

\rm \:  =  \: \displaystyle\lim_{x\to 1} \dfrac{\dfrac{d}{dx} \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{\dfrac{d}{dx} \: (x-1)^{2} \: } \\

Using Leibnitz Rule to differentiate under integral sign, we get

\rm \:  =  \: \displaystyle\lim_{x\to 1} \frac{\dfrac{d}{dx}{(x - 1)}^{2} \:  \times  \: [ {(x - 1)}^{2}cos {(x - 1)}^{4}]}{2(x - 1)}  \\

\rm \:  =  \: \displaystyle\lim_{x\to 1} \frac{2(x - 1) \:  \times  \: [ {(x - 1)}^{2}cos {(x - 1)}^{4}]}{2(x - 1)}  \\

\rm \:  =  \: \displaystyle\lim_{x\to 1} {(x - 1)}^{2} \: cos {(x - 1)}^{4}  \\

\rm \:  =  \: 0 \times cos0 \\

\rm \:  =  \: 0 \\

Hence,

\rm\implies \:\displaystyle\lim_{x\to 1} \dfrac{ \displaystyle\int\limits^{(x-1)^2}_0t\cos(t^2) dt}{(x-1)\sin(x-1)} = 0 \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\displaystyle\lim_{x\to 0} \:  \frac{sinx}{x} = 1 \:  \: }} \\

Leibnitz Rule :-

 \rm \dfrac{d}{dx}\displaystyle\int\limits^{b}_af(t,x)dt =\displaystyle\int\limits^{b}_a\dfrac{ \partial}{ \partial x}f(t,x)dt + \dfrac{d}{dx}b[f(b,x)] - \dfrac{d}{dx}a[f(a,x)]\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}


amansharma264: Excellent
Similar questions