Math, asked by reenasingh2503, 9 months ago

Can anyone solve this fast ​

Attachments:

Answers

Answered by MrVikrant
1

Answer:

Step-by-step explanation:

(\sqrt{x} ^{2} + 1/\sqrt{x} ^{2}  + 2\sqrt{x} .1/\sqrt{x} ) - (\sqrt{x} ^{2} + 1/\sqrt{x} ^{2}  - 2\sqrt{x} .1/\sqrt{x} )\\\\=\sqrt{x} ^{2} + 1/\sqrt{x} ^{2}  + 2\sqrt{x} .1/\sqrt{x} - \sqrt{x} ^{2} - 1/\sqrt{x} ^{2}  + 2\sqrt{x} .1/\sqrt{x}\\

Cancelling out and calculating further,

2\sqrt{x} .1/\sqrt{x} + 2\sqrt{x} .1/\sqrt{x}

=2 + 2

=4

If it helps, please mark it brainliest

Answered by Kanagaraju
1

4

Step-by-step explanation:

(root x + 1/ root x)^2 - ( root x - 1/ root x)^2

= ( root x)^2 + 2 (root x) ( 1/ root ) + ( 1/ root x)^2 - (root x)^2 + 2 (root x) ( 1/ root ) - ( 1/ root x)^2

= 2+ 2 =4

Another simple way is

we know that ( a -1/a)^2 -(a- 1/a)^2 = 4 using this formula

a = root x and 1/a = 1/ root x

so answer is 4

Similar questions