Physics, asked by rohitrawat4686, 2 months ago

can anyone solve this ...help if you can { no spam wrong answer must be reported } chapter 0 physics class 11th Integrate the following :-​

Attachments:

Answers

Answered by allysia
91

Answer:

\\\tt \dfrac{x^{3}}{3} + x + C

Explanation:

Steps:

  • Get the common terms in the numerator.
  • Eliminate with denominator.
  • Integrate.

Shown as:

\\\tt \int \limits \dfrac{x^{3} - x^{2} + x -1 }{x-1} dx \\ \\\tt = \int \limits \dfrac{x^{2}(x - 1) +( x -1) }{x-1} dx \\ \\\tt = \int \limits \dfrac{(x^{2}+ 1) ( x -1) }{x-1}  dx \\ \\\tt = \int \limits (x^{2} +1) dx \\ \\\tt = \dfrac{x^{3}}{3} + x + C

Answered by BrainlyRish
35

Given :  \sf \int \dfrac{ x^3 - x^2 + x - 1}{ x - 1} dx \: \\\\

Exigency To Solve :  \sf \int \dfrac{ x^3 - x^2 + x - 1}{ x - 1} dx \: \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \dag\:\:\bigg\lgroup \sf{ \int \dfrac{ x^3 - x^2 + x - 1}{ x - 1} dx }\bigg\rgroup \\\\⠀⠀⠀

⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: Given\::}}\\

\qquad:\implies \sf \int \dfrac{ x^3 - x^2 + x - 1}{ x - 1} dx \\

\qquad:\implies \sf \int \dfrac{ x^2 ( x - 1) + x - 1}{ x - 1} dx \\

\qquad:\implies \sf \int \dfrac{ ( x ^2 + 1) (x - 1)}{ x - 1} dx \\

\qquad:\implies \sf \int \dfrac{ ( x ^2 + 1) (x - 1)}{ (x - 1)} dx \\

\qquad:\implies \sf \int \dfrac{ ( x ^2 + 1) \cancel{(x - 1)}}{\cancel {(x - 1)}} dx \\

\qquad:\implies \sf \int (x^2 + 1 )dx \\

\qquad:\implies \sf \int (x^2 + x^0) dx \\

\qquad:\implies \sf \int x^2 dx + \int x^0 dx \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\Bigg\lgroup \sf{ \int x^a dx = \dfrac{x^{a + 1}}{a + 1} }\Bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Applying\: \: this \::}}\\

\qquad:\implies \sf \int x^2 dx + \int x^0 dx \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\Bigg\lgroup \sf{ \int x^a dx = \dfrac{x^{a + 1}}{a + 1} }\Bigg\rgroup \\\\

⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Applying\: \: this \::}}\\

\qquad:\implies \sf \int x^2 dx + \int x^0 dx \\

\qquad:\implies \sf \dfrac{x^{2 + 1}}{2 + 1} + \dfrac{x^{0 + 1}}{0 + 1} + c \\

\qquad:\implies \sf \dfrac{x^{2 + 1}}{2 + 1} + \dfrac{x^{1}}{0 + 1} + c \\

\qquad:\implies \sf \dfrac{x^{2 + 1}}{2 + 1} + \dfrac{x^{1}}{ 1} + c \\

\qquad:\implies \sf \dfrac{x^{2 + 1}}{2 + 1} + \dfrac{x}{ 1} + c \\

\qquad:\implies \sf \dfrac{x^{2 + 1}}{2 + 1} + x + c \\ \qquad:\implies \sf \dfrac{x^{3}}{2 + 1} + x + c \\

\qquad :\implies \frak{\underline{\purple{\:Answer \: =\: \dfrac{x^{3}}{3} + x + c \: }} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\: \:Answer \:is\:\:\:\:\bf{ \dfrac{x^{3}}{3} + x + c }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions