Can anyone solve this question?
Q no.3
Attachments:
Answers
Answered by
7
Answer:
2
Step-by-step explanation:
Given: sin⁴α + cos⁴β + 2 = 4sinαcosβ
⇒ (sin⁴α) + (cos⁴β) + 1 + 1 - 4sinαcosβ = 0
⇒ sin⁴α + cos⁴β - 2sin²α + 2sin²α + 2cos²β - 2cos²β + 1 + 1 - 4sinαcosβ = 0
⇒ (sin⁴α + 1 - 2sin²α) + (cos⁴β + 1 - 2cos²β) + 2sin²α + 2cos²β - 4sinαcosβ = 0
⇒ (sin²α - 1)² + (cos²β - 1)² + 2(sinα - cosβ)² = 0
⇒ sin²α = 1, cos²β = 1, sinα = cosβ
⇒ sinα = 1, cosβ = 1
Now.
sinα + cosβ
= 1 + 1
= 2
Hope it helps!
Answered by
0
Answer:
Hello mate
Your answer is 2.....
Similar questions