Math, asked by priyanshupatel8848, 9 days ago

Can anyone solve this? send me correct solution ​

Attachments:

Answers

Answered by mathdude500
3

Given Question :-

Evaluate the following limit :-

\displaystyle \lim_{x \to \: 16} \frac{ {\bigg(x \bigg) }^{\dfrac{1}{4} } - 2 }{{\bigg(x\bigg) }^{\dfrac{1}{2} } - 4}

 \green{\large\underline{\sf{Solution-}}}

Given expansion is

\rm :\longmapsto\:\displaystyle \lim_{x \to \: 16} \frac{ {\bigg(x \bigg) }^{\dfrac{1}{4} } - 2 }{{\bigg(x\bigg) }^{\dfrac{1}{2} } - 4}

\rm \:  =  \:  \dfrac{ {\bigg(16 \bigg) }^{\dfrac{1}{4} } - 2 }{{\bigg(16\bigg) }^{\dfrac{1}{2} } - 4}

\rm \:  =  \: \dfrac{2 - 2}{4 - 4}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, we use Method of Substitution to solve this limit

\rm :\longmapsto\:\displaystyle \lim_{x \to \: 16} \frac{ {\bigg(x \bigg) }^{\dfrac{1}{4} } - 2 }{{\bigg(x\bigg) }^{\dfrac{1}{2} } - 4}

So, Substitute

\red{\rm :\longmapsto\:{\bigg(x\bigg) }^{\dfrac{1}{4} } = y \: \rm \implies\:x =  {y}^{4}}

\red{\rm :\longmapsto\:as \: x \:  \to \: 16, \:  \: so \: y \:  \to \: 2 \: }

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle \lim_{y \to \: 2} \:  \frac{y - 2}{ {y}^{2}  - 4}

\rm \:  =  \: \displaystyle \lim_{y \to \: 2} \:  \frac{y - 2}{ {y}^{2}  -  {2}^{2} }

\rm \:  =  \: \displaystyle \lim_{y \to \: 2} \:  \frac{ \cancel{y - 2}}{  \cancel{(y - 2)} \: (y + 2) }

\rm \:  =  \: \displaystyle \lim_{y \to \: 2} \frac{1}{y + 2}

\rm \:  =  \: \dfrac{1}{2 + 2}

\rm \:  =  \: \dfrac{1}{4}

Hence,

\rm \implies\: \:  \: \boxed{ \tt{ \: \displaystyle \lim_{x \to \: 16} \frac{ {\bigg(x \bigg) }^{\dfrac{1}{4} } - 2 }{{\bigg(x\bigg) }^{\dfrac{1}{2} } - 4}  =  \frac{1}{4} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: \displaystyle \lim_{x \to \: 0} \:  \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle \lim_{x \to \: 0} \:  \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle \lim_{x \to \: 0} \:  \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle \lim_{x \to \: 0} \:  \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle \lim_{x \to \: 0} \:  \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions