Math, asked by khushidewangan012, 7 months ago

can anyone solve this step by step​

Attachments:

Answers

Answered by King412
100

 \large \mathbb \blue{TO \: PROVE :  - } \\

 \sf \:  \frac{1}{sec \theta + tan \theta}  = {sec \theta + tan \theta} \\

 \large \mathbb \blue{SOLUTION: - } \\

  \sf \:  \: L.H.S. \:  \:  = \frac{1}{sec \theta + tan \theta} \\

 \:  \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \frac{{sec \theta + tan \theta}}{({sec \theta  -  tan \theta}) ({sec \theta + tan \theta}) }  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \frac{sec \theta + tan \theta}{ {sec}^{2} \theta  - {tan}^{2}  \theta }  \\

 \star   \: \rm  \red{\: by \: algebric \: identity} \\

   \green{ \boxed{  \sf \: (a + b)(a - b) =  {a}^{2} -  {b}^{2}  }} \\

 \longrightarrow \sf \:   \frac{sec \theta + tan \theta}{1}  \\

 \star   \: \rm  \red{\: by \: trignometric \: identity} \\

 \sf  \green{\boxed { \sf {sec}^{2} A -  {tan}^{2} A = 1}} \\

 \implies \sf \: sec \theta + tan \theta = R.H.S. \\

  \tt \: therefore. \\

 \boxed{\sf \:  \frac{1}{sec \theta + tan \theta}  = {sec \theta + tan \theta} }\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frak \purple{ \: hence \: proved}  \:  \:  \:  \:  \:  \:  \:  \\

Answered by jatingigulia67
1

please mark it as brainliest answer

Attachments:
Similar questions