Math, asked by riddhikaushal01, 4 months ago

can anyone tell me what is factor theorem . class 9 ch 2 ( I want explanation only)​

Answers

Answered by Anonymous
1

Answer:

if g(x) is a factor of polynomial p(x) then p(x) is completely divisible by g(x)

Answered by bharathibalamurugan
1

Step-by-step explanation:

What is a Factor Theorem?

Factor theorem is commonly used for factoring a polynomial and finding the roots of the polynomial. It is a special case of a polynomial remainder theorem.

As discussed in the introduction, a polynomial f(x) has a factor (x-a), if and only if, f(a) = 0. It is one of the methods to do the factorisation of a polynomial.

Proof

Here we will prove the factor theorem, according to which we can factorise the polynomial.

Consider a polynomial f(x) which is divided by (x-c), then f(c)=0.

Using remainder theorem,

f(x)= (x-c)q(x)+f(c)

Where f(x) is the target polynomial and q(x) is the quotient polynomial.

Since, f(c) = 0, hence,

f(x)= (x-c)q(x)+f(c)

f(x) = (x-c)q(x)+0

f(x) = (x-c)q(x)

Therefore, (x-c) is a factor of the polynomial f(x).

How to Use Factor Theorem

The steps are given below to find the factors of a polynomial using factor theorem:

Step 1 : If f(-c)=0, then (x+ c) is a factor of the polynomial f(x).

Step 2 : If p(d/c)= 0, then (cx-d) is a factor of the polynomial f(x).

Step 3 : If p(-d/c)= 0, then (cx+d) is a factor of the polynomial f(x).

Step 4 : If p(c)=0 and p(d) =0, then (x-c) and (x-d) are factors of the polynomial p(x).

If you find it difficult to do this theorem, there is another theorem called remainder theorem.

Hope you understand

pls mark as brainliest

Similar questions