Math, asked by rithanya310, 5 months ago

can some one help with this sum on trignomentric ratios

Attachments:

Answers

Answered by VishnuPriya2801
11

Question :-

If

 \dfrac{ \sec \theta -  \tan \theta}{ \sec \theta +  \tan \theta}  =  \sf \:  \dfrac{1}{4}

then find sin θ.

Answer:-

Given:-

 \: \dfrac{ \sec \theta -  \tan \theta}{ \sec \theta +  \tan \theta}  =  \sf \:  \dfrac{1}{4}  \\  \\  \\  \implies \sf \: ( \sec \theta -  \tan \theta) \times  \frac{1}{ \sec \theta  +  \tan \theta }  =  \frac{1}{4}

we know that,

sec² θ - tan² θ = 1

  • a² - b² = (a + b)(a - b)

So,

⟹ (sec θ + tan θ) (sec θ - tan θ) = 1

sec θ - tan θ = 1/ sec θ + tan θ -- equation (1)

Hence,

⟹ (sec θ - tan θ) (sec θ - tan θ) = 1/4

⟹ (sec θ - tan θ)² = (1/4)

using sec θ = 1/cos θ and tan θ = sin θ / cos θ we get,

 \implies \sf \:  { \bigg( \frac{1}{ \cos \theta }  - \frac{ \sin \theta}{ \cos \theta}  \bigg)}^{2}  =    \frac{1}{4}   \\  \\  \\ \implies \sf \:  \bigg( \frac{1 -  \sin \theta}{ \cos \theta }   \bigg)  ^{2} =   \frac{1}{4}  \\  \\  \\ \implies \sf \: \frac{ {(1 -  \sin \theta)}^{2} }{ { \cos }^{2}  \theta}  =   \frac{1}{4}

using the identity cos² θ = 1 - sin² θ we get,

 \implies \sf \:  \frac{(1 -  \sin \theta)(1 -  \sin \theta) }{ {1}^{2} -  { \sin }^{2} \theta  }  =   \frac{1}{4}   \\ \\  \\

Again using - = (a + b)(a - b) we get,

 \: \implies \sf \: \frac{(1 -  \sin \theta) \cancel{(1 -  \sin \theta)} }{(1 +  \sin \theta) \cancel{(1 -  \sin \theta)}}  =  \frac{1}{4}  \\  \\  \\ \implies \sf \: \frac{1 -  \sin \theta }{1 +  \sin \theta}  =  \frac{1}{4}  \\  \\  \\ \implies \sf \:4(1 -  \sin \theta) = 1 +  \sin \theta \\  \\  \\ \implies \sf \:4 - 4 \sin \theta = 1 +  \sin \theta \\  \\  \\ \implies \sf \:4 - 1 =  \sin \theta + 4 \sin \theta \\  \\  \\ \implies \sf \:3 = 5 \sin \theta \\  \\  \\ \implies  \boxed{ \red{\sf \: \sin \theta =  \frac{3}{5}}}

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{\dfrac{ \sec \theta - \tan \theta}{ \sec \theta + \tan \theta} = \sf \: \dfrac{1}{4}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find\:- \begin{cases} &\sf{sin\theta}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\blue{\underline{Formula \:  Used \::}}}}  \end{gathered}

\rm :\implies\: \boxed{ \pink{ \bf \:tan\theta  \:  =  \tt \:\dfrac{sin\theta}{cos\theta}  }}

\rm :\implies\: \boxed{ \pink{ \bf \: sec\theta \:  =  \tt \: \dfrac{1}{cos\theta} }}

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:\dfrac{ \sec \theta - \tan \theta}{ \sec \theta + \tan \theta} = \sf \: \dfrac{1}{4}

\rm :\implies\:4sec\theta - 4tan\theta = sec\theta + tan\theta

\rm :\implies\:4sec\theta - sec\theta = tan\theta + 4tan\theta

\rm :\implies\:3 \: sec\theta \:  =  \: 5 \: tan\theta

\rm :\implies\:\dfrac{3}{cos\theta}  =  \: \dfrac{5 \: sin\theta}{cos\theta}

\rm :\implies\:3 \:  =  \: 5 \: sin\theta

\rm :\implies\: \boxed{ \pink{ \bf \:sin\theta  \:  =  \tt \: \dfrac{3}{5} }}

Additional Information:-

Additional Information:- Relationship between sides and T ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions