Median of the values of
sec60°, cot45º, sin 90° and cos 60° ?
Answers
Answer:
Step-by-step explanation:
Just memorize the values for sin 0^\circ, sin 30^\circ, sin 45^\circ, sin 60^\circ and sin 90^\circ. Even there is no need to try too hard to memorize them. There is an easy way to memorize them.
sin 0^\circ=\sqrt{\frac{0}{4}}=0
sin 30^\circ=\sqrt{\frac{1}{4}}=\frac{1}{2}
sin 45^\circ=\sqrt{\frac{2}{4}}=\frac{1}{\sqrt{2}}
sin 60^\circ=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}
sin 90^\circ=\sqrt{\frac{4}{4}}=1
Note down the pattern from sin 0^\circ to sin 90^\circ:
\sqrt{\frac{0}{4}},\sqrt{\frac{1}{4}}, \sqrt{\frac{2}{4}}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{4}}
Hence, we can now fill all sin values in the table.
How to memorize values of Trigonometric Ratios for 0, 30, 45, 60 and 90 degrees
Now, we will fill all the cos values.
All the cos values are filled in opposite order starting from sin 0^\circ to sin 90^\circ. I mean to say that
sin 0^\circ = cos 90^\circ
sin 30^\circ = cos 60^\circ
sin 45^\circ = cos 45^\circ
sin60^\circ = cos 30^\circ
sin 90^\circ = cos 0^\circ
Hence, all the cos values can be filled now.
How to memorize values of Trigonometric Ratios for 0, 30, 45, 60 and 90 degrees
We know that tan \theta = (sin \theta)/(cos \theta)
Hence, all the tan values can be obtained from sin and cos values.
tan 0^\circ = sin 0^\circ / cos 0^\circ = 0/1 = 0
tan 30^\circ = sin 30^\circ / cos 30^\circ=\frac{1}{\sqrt{3}}
tan 45^\circ = sin 45^\circ / cos 45^\circ=1
tan 60^\circ = sin 60^\circ / cos 60^\circ=\sqrt{3}
tan 90^\circ = sin 90^\circ / cos 90^\circ = 1/0 which is NOT DEFINED
Similarly, we have sec \theta = 1/cos \theta, cot \theta = cos \theta / sin \theta and cosec \theta = 1/ sin \theta.
Hence, all the tan, sec, cosec and cot values can be filled now.
Step-by-step explanation: