can somebody explain some major properties of quark?
Answers
Answered by
1
helll... oooo!!
A quark is a elementary particle & a fundamental constituent of matter.
Quarks combine to form composite particles called hadrons,
the most stable of which are protons and neutrons, the components of atomic nuclei.
The following table summarizes the key properties of the six quarks. Flavor quantum numbers (isospin (I3), charm (C), strangeness(S, not to be confused with spin), topness (T), and bottomness (B′)) are assigned to certain quark flavors, and denote qualities of quark-based systems and hadrons. The baryon number (B) is +1⁄3 for all quarks, as baryons are made of three quarks. For antiquarks, the electric charge (Q) and all flavor quantum numbers (B, I3, C, S, T, and B′) are of opposite sign. Mass and total angular momentum (J; equal to spin for point particles) do not change sign for the antiquarks
hope this helps you...!!
A quark is a elementary particle & a fundamental constituent of matter.
Quarks combine to form composite particles called hadrons,
the most stable of which are protons and neutrons, the components of atomic nuclei.
The following table summarizes the key properties of the six quarks. Flavor quantum numbers (isospin (I3), charm (C), strangeness(S, not to be confused with spin), topness (T), and bottomness (B′)) are assigned to certain quark flavors, and denote qualities of quark-based systems and hadrons. The baryon number (B) is +1⁄3 for all quarks, as baryons are made of three quarks. For antiquarks, the electric charge (Q) and all flavor quantum numbers (B, I3, C, S, T, and B′) are of opposite sign. Mass and total angular momentum (J; equal to spin for point particles) do not change sign for the antiquarks
hope this helps you...!!
IRONBLASTER:
some properties u told what I know
Answered by
1
quark is one of the fundamental particles in physics. They join to form hadrons, such as protons and neutrons, which are components of the nuclei of atoms. The study of quarks and the interactions between them through the strong force is called . The anti-particle of a quark is the antiquark.
Electric charge:
Quarks have fractional electric charge values—either −1⁄3 or +2⁄3 times the elementary charge, depending on flavor. Up, charm, and top quarks (collectively referred to as up-type quarks) have a charge of +2⁄3, while down, strange, and bottom quarks (down-type quarks) have −1⁄3. Antiquarks have the opposite charge to their corresponding quarks; up-type antiquarks have charges of −2⁄3 and down-type antiquarks have charges of +1⁄3.
Spin:
Spin can be represented by a vector whose length is measured in units of the reduced Planck constant ħ (pronounced "h bar"). For quarks, a measurement of the spin vector component along any axis can only yield the values +ħ/2 or −ħ/2; for this reason quarks are classified as spin-1⁄2 particles.[4] The component of spin along a given axis—by convention the z axis—is often denoted by an up arrow ↑ for the value +1⁄2 and down arrow ↓ for the value −1⁄2, placed after the symbol for flavor. For example, an up quark with a spin of +1⁄2 along the z axis is denoted by u↑.
Electric charge:
Quarks have fractional electric charge values—either −1⁄3 or +2⁄3 times the elementary charge, depending on flavor. Up, charm, and top quarks (collectively referred to as up-type quarks) have a charge of +2⁄3, while down, strange, and bottom quarks (down-type quarks) have −1⁄3. Antiquarks have the opposite charge to their corresponding quarks; up-type antiquarks have charges of −2⁄3 and down-type antiquarks have charges of +1⁄3.
Spin:
Spin can be represented by a vector whose length is measured in units of the reduced Planck constant ħ (pronounced "h bar"). For quarks, a measurement of the spin vector component along any axis can only yield the values +ħ/2 or −ħ/2; for this reason quarks are classified as spin-1⁄2 particles.[4] The component of spin along a given axis—by convention the z axis—is often denoted by an up arrow ↑ for the value +1⁄2 and down arrow ↓ for the value −1⁄2, placed after the symbol for flavor. For example, an up quark with a spin of +1⁄2 along the z axis is denoted by u↑.
Similar questions