Math, asked by PraneethGSK, 11 months ago

Can someone help me in this Question Please??​

Attachments:

Answers

Answered by vanshikamonika9948
1

Answer is given below

Hope you like it !!

Attachments:
Answered by ItsMysteriousGirl
6

Question :

Prove that :

\sqrt{ \frac{sec \theta - 1}{sec \theta  +  1} }  +  \sqrt{ \frac{sec \theta  +  1}{sec \theta - 1} }  = 2cosec \theta

Proof :

LHS=

\implies {\small{\sqrt { \frac {(sec  \theta - 1 )( sec \ theta   -   1)}{(sec \theta  + 1)(sec \theta - 1)} }}   +  \sqrt{ \frac{(sec \theta  +  1)(sec \theta  + 1)}{(sec \theta   -   1)(sec \theta  + 1)} } }

\implies \sqrt{ \frac{ {(sec \theta - 1)}^{2} }{ {sec \theta }^{2} - 1 } }  +   \sqrt{ \frac{ {(sec \theta  +  1)}^{2} }{{sec \theta }^{2} - 1 } }  \\ \implies  \sqrt{ \frac{{(sec \theta - 1)}^{2}}{ {tan}^{2}  \theta} }  +  \sqrt{ \frac{{(sec \theta  +  1)}^{2}}{{tan}^{2}  \theta} }  \\ \implies  \frac{sec \theta - 1}{tan \theta}  + \frac{sec \theta  +  1}{tan \theta} \\   \implies \frac{ sec \theta \cancel { - 1 } + sec \theta \cancel{ + 1}}{tan \theta}  \\  \implies \frac{2sec \theta}{tan \theta}  \\ \implies \frac{2}{ \cancel{cos \theta}}  \times  \frac{ \cancel{cos \theta}}{sin \theta}  \\ \implies 2cosec \theta=RHS

Identities Used :

1. {sec}^{2}  \theta - 1 =  {tan}^{2} \theta \\ 2.(a + b)(a - b) =  {a}^{2} -  {b}^{2}    \\ 3. sec \theta =  \frac{1}{cos \theta}  \\ 4.tan \theta =  \frac{sin \theta}{cos \theta}\\4.\frac{1}{sin \theta}=cosec \theta

Similar questions