Math, asked by anhle6488, 1 year ago

can someone please help me solve this?

Attachments:

Answers

Answered by abhi569
3

Answer:

\implies\dfrac{sec\theta + tan\theta}{cot\theta+cos\theta} = tan\theta sec\theta

Step-by-step explanation:

\implies\dfrac{sec\theta + tan\theta}{cot\theta+cos\theta}

From the trigonometric properties :

  • cotA = 1 / tanA
  • cosA = 1 / secA

\implies\dfrac{sec\theta+tan\theta}{\dfrac{1}{tan\theta}+\dfrac{1}{sec\theta}}\\\\\\\implies\dfrac{sec\theta+tan\theta}{\dfrac{sec\theta+tan\theta}{tan\theta sec\theta}}\\\\\\\implies\dfrac{sec\theta+tan\theta}{1}\times\dfrac{sec\theta tan\theta}{sec\theta + tan\theta} \\\\\\\implies tan\theta sec\theta

Hence proved.

Answered by Anonymous
6

\huge{\mathfrak{\underline{\underline{\orange{Answer :-}}}}}

To prove :-

\large{\bf{\frac{sec\theta + tan\theta}{cot\theta+cos\theta} = tan\theta {\times}sec\theta}}

Proof :-

Using Identities :-

\huge{\boxed{\underline{\red{cotA = \frac{1}{tanA}}}}}

\huge{\boxed{\underline{\blue{cosA = \frac{1}{secA}}}}}

________________[Put Values]

\sf{\frac{sec\theta+tan\theta}{\frac{1}{tan\theta}+\frac{1}{sec\theta}}}

Taking LCM

\sf{\frac{sec\theta+tan\theta}{\frac{sec\theta+tan\theta}{tan\theta sec\theta}}}

\sf{\frac{sec\theta+tan\theta}{1}\times\frac{sec\theta tan\theta}{sec\theta + tan\theta}}

\bf{tan\theta{\times} sec\theta}

\huge{\boxed{\boxed{\underline{\bf{\red{Hence \: Proved}}}}}}

Similar questions