Math, asked by Keara14, 9 months ago

can someone please help me with this trigonometry problem!​

Attachments:

Answers

Answered by Anonymous
1

cosec A = 2

cosec A = cosec 30°

A = 30°

 \frac{1}{tan \: a}  +  \frac{sin \: a}{1 + cos \: a}  \\  \\   = \:  \frac{1}{tan \: 30}  +  \frac{sin \: 30}{1 + cos \: 30}  \\  \\  =  \frac{1}{ \frac{1}{ \sqrt{3} } }  +  \frac{ \frac{1}{2} }{1 +  \frac{ \sqrt{3} }{2} }  \\  \\  =  \sqrt{3}  +  \frac{ \frac{1}{2} }{ \frac{2 +  \sqrt{3} }{2} } \\  \\   =  \sqrt{3}  +  \frac{1}{2 +  \sqrt{3} }  \\  \\  =  \frac{ \sqrt{3} (2 +  \sqrt{3}) + 1 }{2 +  \sqrt{3} }  \\  \\  =  \frac{2 \sqrt{3} + 3 + 1 }{2 +  \sqrt{3} }  \\  \\  =  \frac{2 \sqrt{3} + 4 }{2 +  \sqrt{3} }  \\  \\  =  \frac{2 \sqrt{3} + 4 }{2 +  \sqrt{3} } \times  \frac{2  -   \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  =  \frac{(2 \sqrt{3} + 4)(2 -  \sqrt{3})  }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  =  \frac{2 \sqrt{3} (2 -  \sqrt{3}) + 4(2 -  \sqrt{3}  )}{4 - 3}  \\  \\  =  \frac{4 \sqrt{3} - 6 + 8 - 4 \sqrt{3}  }{1}  \\  \\  = 2

⚠️⚠️ⓉⒽⒶⓃⓀⓈ⚠️⚠️

Answered by tahseen619
4

2

Step-by-step explanation:

Given:

cosec A = 2

To find:

The value of

 \dfrac{1}{ \tan A}  +  \dfrac{ \sin A}{1 +  \cos A}

Solution:

cosec A = 2

As, We know

cosec 30° = 2

So, cosec A = cosec 30°

A = 30°

Now,

 \frac{1}{ \tan A}  +  \frac{ \sin A}{1 +  \cos A} \\  \\ \frac{1}{ \tan30}   +   \frac{ \sin30}{1 +  \cos 30} \\  \\  \cot30 +  \frac{ \frac{1}{2} }{1 +  \frac{ \sqrt{3} }{2} }  \\  \\  \sqrt{3} +  \frac{ \frac{1}{2} }{ \frac{2 +  \sqrt{3} }{2} }  \\  \\  \sqrt{3}   +  \frac{1}{2}   \times  \frac{2}{2 +  \sqrt{3} }  \\  \\  \sqrt{3} +  \frac{1}{2 +  \sqrt{3} }  \\ \\ [\text{Rationalizing the denominator}] \\  \\  \sqrt{3} \:    + \frac{(2 -  \sqrt{3}) }{(2 +  \sqrt{3} )(2 -  \sqrt{3} )} \\  \\  \sqrt{3} +  \frac{2 -  \sqrt{3} }{(2){}^{2}  -  {( \sqrt{3} )}^{2} }   \\  \\  \sqrt{3}    + \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \sqrt{3}   + 2 -  \sqrt{3}  \\  \\ 2

Hence, The required answer is 2.

Some Important trigonometry Rules:

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Trigonometry Value

See in the attachment.

Attachments:
Similar questions