Math, asked by rekhanandanwar88, 10 months ago

can someone please solve this question [integrate(3/x)dx]​

Answers

Answered by Asterinn
3

\int_{}^{}  \dfrac{3}{x} dx

3\int_{}^{}  \dfrac{1}{x} dx

We know that :-

\int_{}^{}  \dfrac{1}{x} dx =  log(x)

therefore :-

3log(x) + c

where c = constant

Answer :

3log(x) + c

______________________

Learn more:

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

_______________________

Answered by Anonymous
1

Given ,

The function is 3/x

integrating wrt to x , we get

 \tt \implies \int{ \frac{3}{x}}  \:  \: dx

 \tt \implies 3 \int{ \frac{1}{x}}  \:  \: dx

 \tt \implies 3  \times log(x)  + C

Remmember :

 \tt \implies \int{ {(x)}^{n}  } \:  \: dx =  \frac{ {(x)}^{n + 1} }{n + 1}+ C  \:  \: , \:  \: n≠1

\tt \implies \int{  \frac{1}{x}   } \:  \: dx =    log(x) + C

______________ Keep Smiling

Similar questions