Math, asked by aashnaarm, 4 months ago

can someone please tell me the correct answer?​

Attachments:

Answers

Answered by pankaj1236787
0

Answer:

3rd

one is the answer

Step-by-step explanation:

Answered by shadowsabers03
4

Given,

\longrightarrow f(x)=3x^3+2x^2-5x+\lambda

Put x=0.

\longrightarrow f(0)=\lambda

Put x=1.

\longrightarrow f(1)=\lambda

If f(x) has two distinct and real roots in [0,\ 1], there should exist a real number c\in(0,\ 1) such that f'(c)=0.

Taking first derivative of f(x) wrt x,

\longrightarrow f'(x)=9x^2+4x-5

Put x=c.

\longrightarrow f'(c)=9c^2+4c-5

\longrightarrow 9c^2+4c-5=0

\longrightarrow c=\dfrac{-4+\sqrt{16+180}}{18}\quad\quad\big[c\in(0,\ 1)\big]

\longrightarrow c=\dfrac{5}{9}

Finding f(c),

\longrightarrow f\left(\dfrac{5}{9}\right)=3\left(\dfrac{5}{9}\right)^3+2\left(\dfrac{5}{9}\right)^2-5\left(\dfrac{5}{9}\right)+\lambda

\longrightarrow f\left(\dfrac{5}{9}\right)=\lambda-\dfrac{400}{243}

Case 1:-

\longrightarrow f(0)\in[0,\ \infty)

\longrightarrow \lambda\in[0,\ \infty)\quad\quad\dots(1.1)

and,

\longrightarrow f(1)\in[0,\ \infty)

\longrightarrow \lambda\in[0,\ \infty)\quad\quad\dots(1.2)

and,

\longrightarrow f\left(\dfrac{5}{9}\right)\in(-\infty,\ 0)

\longrightarrow\lambda-\dfrac{400}{243}\in(-\infty,\ 0)

\longrightarrow\lambda\in\left(-\infty,\ \dfrac{400}{243}\right)\quad\quad\dots(1.3)

Taking (1.1)\land(1.2)\land(1.3),

\longrightarrow\lambda\in\left[0,\ \dfrac{400}{243}\right)\quad\quad\dots(1)

Case 2:-

\longrightarrow f(0)\in(-\infty,\ 0]

\longrightarrow \lambda\in(-\infty,\ 0]\quad\quad\dots(2.1)

and,

\longrightarrow f(1)\in(-\infty,\ 0]

\longrightarrow \lambda\in(-\infty,\ 0]\quad\quad\dots(2.2)

and,

\longrightarrow f\left(\dfrac{5}{9}\right)\in(0,\ \infty)

\longrightarrow\lambda-\dfrac{400}{243}\in(0,\ \infty)

\longrightarrow\lambda\in\left(\dfrac{400}{243},\ \infty\right)\quad\quad\dots(2.3)

Taking (2.1)\land(2.2)\land(2.3),

\longrightarrow\lambda\in\phi\quad\quad\dots(2)

Taking (1)\lor(2) we get,

\longrightarrow\underline{\underline{\lambda\in\left[0,\ \dfrac{400}{243}\right)}}

Similar questions