Physics, asked by 12glory420, 10 months ago

Can the sum of the magnitudes of two vectors ever be equal to the magnitudes of the some of two vectors?

Answers

Answered by ptl
0

Explanation:

IT IS ≥ OR EQUAL TO.

THANKS AND MARK ME AS BRAINLIEST.

Answered by Thoroddinson
0

Yes, the sum of magnitude of two vectors can be equal to the magnitude of sum of these two vectors.

Consider two vectors\overrightarrow{a} = a_{x}\widehat{i} +a _{y}\widehat{y} and such that the sum of both the vectors is given by another vector as:

\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}

Substitute\overrightarrow{a} = a_{x}\widehat{i} + a_{y}\widehat{j} and , \overrightarrow{b} = b_{x}\widehat{i} + b_{y}\widehat{j}

\overrightarrow{c} = a_{x}\widehat{i} + a_{y}\widehat{j} + b_{x}\widehat{i} + b_{y}\widehat{j}

= (a_{x} + b_{x})\widehat{i} + (a_{y} + b_{y})\widehat{j}

The magnitude of vector \overrightarrow{c}is:

|\overrightarrow{c}| = \sqrt{(a_{x}+b_{x})^{2} + (a_{y}+b_{y})^{2}}

The magnitude of vectors is: \overrightarrow{a} = a_{x}\widehat{i} + a_{y}\widehat{j}

|\overrightarrow{a}| = \sqrt{(a_{x})^{2}+ (a_{y})^{2}}

The magnitude of vectors\overrightarrow{b} = b_{x}\widehat{i} + b_{y}\widehat{j} is:

|\overrightarrow{b}| = \sqrt{(b_{x})^{2}+ (b_{y})^{2}}

If the sum of magnitude of vector\overrightarrow{a} and magnitude of vector\overrightarrow{b} is equal to magnitude of vector\overrightarrow{c} , then

|\overrightarrow{c}| = |\overrightarrow{b}| + |\overrightarrow{a}|

Square both sides and expand,

|\overrightarrow{c}|^{2} = \left ( |\overrightarrow{b}| \right + |\overrightarrow{a}|)^{2}

= |\overrightarrow{a}|^{2} + |\overrightarrow{b}|^{2} + 2 |\overrightarrow{a}| |\overrightarrow{b}|

Substitute|\overrightarrow{c}| = \sqrt{(a_{x}+ b_{x})^{2} + (a_{y}+ b_{y})^{2}} , |\overrightarrow{a}| = \sqrt{(a_{x})^{2} + (a_{y})^{2}}and |\overrightarrow{b}| = \sqrt{(b_{x})^{2} + (b_{x})^{2}},

233-2037_8.PNG

Square both sides,

Therefore, if two vectors are such that the condition2a_{x}a_{y}b_{x}v_{y} = a_{x}^{2}b_{y}^{2}+ a_{y}^{2}b_{x}^{2} is satisfied, then the magnitude of the sum of two vectors is equal to the sum of magnitude of the vectors.

For example, assume \overrightarrow{b} = -\widehat{i}-\widehat{j}and\overrightarrow{b} = -\widehat{i}-\widehat{j} , then the condition 2a_{x}a_{y}b_{x}b_{y} = a_{x}^{2} b_{y}^{2}+ a_{y}^{2} b_{x}^{2} gives 2 = 2 , therefore for these vectors that sum of magnitude of each vector is equal to the magnitude of the sum of the vectors

Similar questions