Math, asked by BangtanArmy777, 4 months ago

can y'all please solve these ​

Attachments:

Answers

Answered by vipashyana1
5

Answer:

1) {16}^{ \frac{3}{4} }  \div  {16}^{ \frac{1}{4} }  =  {16}^{ \frac{3}{4}  -  \frac{1}{4} }  =   {16}^{ \frac{3 - 1}{4} } =  {16}^{ \frac{2}{4} }   =  {16}^{ \frac{1}{2} }  =  \sqrt{16}  = 4 \\ 2) \frac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 }  = a + b \sqrt{2}  \\  \frac{ \sqrt{2}  + 1}{ \sqrt{2} - 1 }  \times  \frac{ \sqrt{2} + 1 }{ \sqrt{2} + 1 }  = a + b \sqrt{2} \\  \frac{ {( \sqrt{2} + 1) }^{2} }{ {( \sqrt{2} )}^{2} -  {(1)}^{2}  }  = a + b \sqrt{2} \\  \frac{2 + 1 + 2 \sqrt{2} }{2 - 1}  = a + b \sqrt{2} \\  \frac{3 + 2 \sqrt{2} }{1}  = a + b \sqrt{2} \\ 3 + 2 \sqrt{2}  = a + b \sqrt{2} \\ a = 3 \: and \: b  = 2 \\ 3)x =  \sqrt{5}  + 2 \\ x  -   \frac{1}{x}  \\  =  \sqrt{5}  + 2 -  \frac{1}{ \sqrt{5} + 2 }  \\  =  \frac{ {( \sqrt{5} + 2)  }^{2}  - 1}{ \sqrt{5}  + 2}  \\  =  \frac{5 + 4 + 4 \sqrt{5} }{ \sqrt{5} + 2 }  \\  =  \frac{9 + 4 \sqrt{5} }{ \sqrt{5} + 2 }  \\ 4) \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  -  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \\  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  -  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  =  \frac{ {(2 +  \sqrt{3} )}^{2} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }  -  \frac{ {(2 -  \sqrt{3} )}^{2} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }  \\  =  \frac{4 + 3 + 4 \sqrt{3} }{4 - 3}  -  \frac{4 + 3 - 4 \sqrt{3} }{4 - 3}  \\  =  \frac{7 + 4 \sqrt{3} }{1}  -  \frac{(7 - 4 \sqrt{3} )}{1}  \\  = 7 + 4 \sqrt{3}  - 7 + 4 \sqrt{3}  \\  = 7 - 7 + 4 \sqrt{3}  + 4 \sqrt{3}  \\  = 8 \sqrt{3}

Similar questions